Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611304

RESUMO

Ulcerative colitis is a chronic inflammatory disease caused by abnormal immune responses in the intestinal mucosa and gut microorganisms. Unlike other mugworts, Artemisia argyi H. (A. argyi H.) enhances antioxidant, anti-inflammatory, and anticancer effects, but the improvement effects against gut inflammation have not yet been reported. Therefore, this study aimed to confirm the alleviation of the inflammatory state in the gut by A. argyi H. fermented with Lactobacillus plantarum (FAA), using lipopolysaccharide (LPS)-induced RAW 264.7 cells and dextran sulfate sodium (DSS)-induced colitis models. In vitro, FAA (10, 50, 100, and 200 µg/mL) was pretreated into RAW 264.7 cells, followed with LPS (100 ng/mL), which induced the cell damage. Meanwhile, in vivo, FAA (100, 200 mg/kg/day) was orally administered into 6-week-old C57BL/6N mice for 3 weeks. During the last week of FAA administration, 2.5% DSS was used to induce colitis. The results showed that FAA reduced the production of nitric oxide (p < 0.0001), tumor necrosis factor (TNF)-α, interleukin (IL)-6 (p < 0.0001), and IL-1ß (p < 0.0001) in the LPS-induced RAW 264.7 cells. Moreover, in the DSS-induced colitis model, FAA alleviated clinical symptoms (p < 0.001), inhibited the inflammatory state by reducing the production of TNF-α (p < 0.0001) and interferon-γ in intestinal immune cells (p < 0.0001), and strengthened the intestinal barrier by increasing the number of goblet cells (p < 0.0001). Furthermore, the anti-inflammatory effects were confirmed by the alleviation of histological damage (p < 0.001) and down-regulation of the expression of inflammatory proteins (TLR4, p < 0.0001; MyD88, p < 0.0001; Cox-2, p < 0.0001). These results suggest the potential of FAA as a dietary ingredient for preventing inflammation in the gut.

2.
PLoS One ; 18(6): e0287577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384629

RESUMO

Angiogenesis plays an essential role in various normal physiological processes, such as embryogenesis, tissue repair, and skin regeneration. Visfatin is a 52 kDa adipokine secreted by various tissues including adipocytes. It stimulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis. However, there are several issues in developing full-length visfatin as a therapeutic drug due to its high molecular weight. Therefore, the purpose of this study was to develop peptides, based on the active site of visfatin, with similar or superior angiogenic activity using computer simulation techniques.Initially, the active site domain (residues 181∼390) of visfatin was first truncated into small peptides using the overlapping technique. Subsequently, the 114 truncated small peptides were then subjected to molecular docking analysis using two docking programs (HADDOCK and GalaxyPepDock) to generate small peptides with the highest affinity for visfatin. Furthermore, molecular dynamics simulations (MD) were conducted to investigate the stability of the protein-ligand complexes by computing root mean square deviation (RSMD) and root mean square fluctuation(RMSF) plots for the visfatin-peptide complexes. Finally, peptides with the highest affinity were examined for angiogenic activities, such as cell migration, invasion, and tubule formation in human umbilical vein endothelial cells (HUVECs). Through the docking analysis of the 114 truncated peptides, we screened nine peptides with a high affinity for visfatin. Of these, we discovered two peptides (peptide-1: LEYKLHDFGY and peptide-2: EYKLHDFGYRGV) with the highest affinity for visfatin. In an in vitrostudy, these two peptides showed superior angiogenic activity compared to visfatin itself and stimulated mRNA expressions of visfatin and VEGF-A. These results show that the peptides generated by the protein-peptide docking simulation have a more efficient angiogenic activity than the original visfatin.


Assuntos
Proteínas Angiogênicas , Fator A de Crescimento do Endotélio Vascular , Humanos , Nicotinamida Fosforribosiltransferase , Simulação de Acoplamento Molecular , Células Endoteliais , Simulação de Dinâmica Molecular
3.
Molecules ; 25(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872354

RESUMO

In the present study, we investigated the cognitive improvement effects and its mechanisms of krill oil (KO) in Aß25-35-induced Alzheimer's disease (AD) mouse model. The Aß25-35-injected AD mouse showed memory and cognitive impairment in the behavior tests. However, the administration of KO improved novel object recognition ability and passive avoidance ability compared with Aß25-35-injected control mice in behavior tests. In addition, KO-administered mice showed shorter latency to find the hidden platform in a Morris water maze test, indicating that KO improved learning and memory abilities. To evaluate the cognitive improvement mechanisms of KO, we measured the oxidative stress-related biomarkers and apoptosis-related protein expressions in the brain. The administration of KO inhibited oxidative stress-related biomarkers such as reactive oxygen species, malondialdehyde, and nitric oxide compared with AD control mice induced by Aß25-35. In addition, KO-administered mice showed down-regulation of Bax/Bcl-2 ratio in the brain. Therefore, this study indicated that KO-administered mice improved cognitive function against Aß25-35 by attenuations of neuronal oxidative stress and neuronal apoptosis. It suggests that KO might be a potential agent for prevention and treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Apoptose/efeitos dos fármacos , Euphausiacea/química , Ácidos Graxos Insaturados/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/efeitos adversos , Animais , Comportamento Animal , Biomarcadores , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Insaturados/química , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
4.
Nutr Res Pract ; 12(2): 93-100, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29629025

RESUMO

BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to 250 µM H2O2 for 24 h were treated with different concentrations of PO (25, 125, 250 and 500 µg/mL) and its major fatty acid, ALA (1, 2.5, 5 and 25 µ/mL). We examined the effects of PO and ALA on H2O2-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of H2O2 resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the H2O2-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the H2O2-mediated up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by H2O2. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

5.
J Med Food ; 19(10): 912-921, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27696934

RESUMO

In this study, we aimed to investigate the protective effect of three kinds of vegetable oils with different fatty acid compositions against cognitive impairment in an Alzheimer's disease (AD) mouse model. After intracerebroventricular injection of amyloid beta25-35 (Aß25-35) into the brain of institute of cancer research mice, olive oil (rich in oleic acid, C18:1), corn oil (rich in linoleic acid, C18:2), and perilla oil (rich in α-linolenic acid [ALA], C18:3) were administered at the oral dose of 500 mg/kg/day for 14 days. The results revealed that Aß25-35 induced learning and memory dysfunction according to the T-maze, novel object recognition, and Morris water maze tests. Among the three vegetable oils, however, the perilla oil group of mice showed marked attenuation of cognitive impairment, that is, a greater number of explorations on a new route/object than on an old route/object in the T-maze and novel object recognition tests. In the Morris water maze test, perilla oil decreased the time to reach the platform and increased the number of crossings over the target quadrant in which the platform was located previously. Furthermore, the beneficial effect of perilla oil supplementation on oxidative stress was reflected in the inhibition of malondialdehyde and nitric oxide (NO) production in Aß25-35-injected mice. We also found that perilla oil downregulated protein expression levels of inducible NO synthase and cyclooxygenase-2 and upregulated brain-derived neurotrophic factor. These findings showed that ALA-rich perilla oil has a potential for prevention or treatment of neurodegenerative diseases such as AD.

6.
J Cancer Prev ; 21(1): 32-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27051647

RESUMO

BACKGROUND: Malvidin is one of the most abundant components in red wines and black rice. The effects of malvidin on aging and lifespan under oxidative stress have not been fully understood. This study focused on the anti-aging effect of malvidin on stress-induced premature senescence (SIPS) in WI-38 human lung-derived diploid fibroblasts. METHODS: In order to determine the viability of WI-38 cells, MTT assay was conducted, and malondialdehyde level was determined using thiobarbituric acid-reactive substance assay. Protein expression of inflammation-related factors was also evaluated by Western blot analysis. RESULTS: Acute and chronic oxidative stress via hydrogen peroxide (H2O2) treatment led to SIPS in WI-38 cells, which showed decreased cell viability, increased lipid peroxidation, and a shortened lifespan in comparison with non-H2O2-treated WI-38 cells. However, malvidin treatment significantly attenuated H2O2-induced oxidative stress by inhibiting lipid peroxidation and increasing cell viability. Furthermore, the lifespan of WI-38 cells was prolonged by malvidin treatment. In addition, malvidin downregulated the expression of oxidative stress-related proteins, including NF-κB, COX-2, and inducible nitric oxide synthase. Furthermore, protein expression levels of p53, p21, and Bax were also regulated by malvidin treatment in WI-38 cells undergoing SIPS. CONCLUSIONS: Malvidin may potentially inhibit the aging process by controlling oxidative stress.

7.
Nutr Res Pract ; 9(2): 123-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25861417

RESUMO

BACKGROUND/OBJECTIVES: Natural products or active components with a protective effect against oxidative stress have attracted significant attention for prevention and treatment of degenerative disease. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from Litchi chinensis Sonn. We investigated the protective effect and its related mechanism of oligonol against oxidative stress. MATERIALS/METHODS: Oxidative stress in C6 glial cells was induced by hydrogen peroxide (H2O2) and the protective effects of oligonol on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) synthesis, and mRNA expression related to oxidative stress were determined. RESULTS: Treatment with oligonol inhibited NO and ROS formation under cellular oxidative stress in C6 glial cells. In addition, it recovered cell viability in a dose dependent-manner. Treatment with oligonol also resulted in down-regulated mRNA expression related to oxidative stress, nuclear factor kappa-B (NF-κB) p65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the control group treated with H2O2. In particular, expression of NF-κB p65, COX-2, and iNOS was effectively reduced to the normal level by treatment with 10 µg/mL and 25 µg/mL of oligonol. CONCLUSIONS: These results indicate that oligonol has protective activity against oxidative stress-induced inflammation. Oligonol might be a promising agent for treatment of degenerative diseases through inhibition of ROS formation and NF-κB pathway gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA