Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 33(7): 1615-1621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623421

RESUMO

ß-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified ß-glucan. Alkali-treated ß-glucan had a distinct shape and smaller particle size than untreated ß-glucan. The reduced particle size was conducive to the stability of the suspension because the ß-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of ß-glucan, whereas exposure of macrophages to heat-treated ß-glucan decreased their immune activity. ß-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of ß-glucan is a key factor in ß-glucan-induced immune responses of macrophages. Thus, the modification of the ß-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.

2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239816

RESUMO

Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Polipropilenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Camundongos Endogâmicos ICR , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade , Mamíferos
3.
Int J Biol Macromol ; 222(Pt B): 2144-2157, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216106

RESUMO

This study shows tunable stress relaxing gellan gum (GG) hydrogel for enhanced cell growth and regenerative medicine. The molecular weight and physical crosslinking density of GG were tuned and characterized with physicochemical analysis and mechanical tests. The result showed that a decrease in the molecular weight of the GG correlated with a decline in the mechanical properties but faster stress relaxing character. We also discovered that human-derived bone marrow stem cells (hBMSC) showed active viability, proliferation, and remodeling in the fast stress relaxing GG hydrogel. In particular, hBMSC showed an enhanced release profile of growth factors and exosomes (Exo) in the fast stress relaxing GG hydrogel. The secretome obtained from hBMSC embedded in hydrogel exhibited similar cytotoxicity and wound healing properties to that of secretome extracted from hBMSC cultured in a tissue culture plate (TCP) a standard culture condition. Thus, this work demonstrates the potential of fast stress relaxing GG hydrogels for medical application.


Assuntos
Células-Tronco Mesenquimais , Polissacarídeos Bacterianos , Humanos , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química , Osso e Ossos , Engenharia Tecidual
4.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080277

RESUMO

Cell therapies for age-related macular degeneration (AMD) treatment have been developed by integrating hydrogel-based biomaterials. Until now, cell activity has been observed only in terms of the modulus of the hydrogel. In addition, cell behavior has only been observed in the 2D environment of the hydrogel and the 3D matrix. As time-dependent stress relaxation is considered a significant mechanical cue for the control of cellular activities, it is important to optimize hydrogels for retinal tissue engineering (TE) by applying this viewpoint. Herein, a gellan Gum (GG)/Hyaluronic acid (HA) hydrogel was fabricated using a facile physical crosslinking method. The physicochemical and mechanical properties were controlled by forming a different composition of GG and HA. The characterization was performed by conducting a mass swelling study, a sol fraction study, a weight loss test, a viscosity test, an injection force study, a compression test, and a stress relaxation analysis. The biological activity of the cells encapsulated in 3D constructs was evaluated by conducting a morphological study, a proliferation test, a live/dead analysis, histology, immunofluorescence staining, and a gene expression study to determine the most appropriate material for retinal TE biomaterial. Hydrogels with moderate amounts of HA showed improved physicochemical and mechanical properties suitable for injection into the retina. Moreover, the time-dependent stress relaxation property of the GG/HA hydrogel was enhanced when the appropriate amount of HA was loaded. In addition, the cellular compatibility of the GG/HA hydrogel in in vitro experiments was significantly improved in the fast-relaxing hydrogel. Overall, these results demonstrate the remarkable potential of GG/HA hydrogel as an injectable hydrogel for retinal TE and the importance of the stress relaxation property when designing retinal TE hydrogels. Therefore, we believe that GG/HA hydrogel is a prospective candidate for retinal TE biomaterial.


Assuntos
Ácido Hialurônico , Hidrogéis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Epiteliais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Retina , Pigmentos da Retina , Engenharia Tecidual
5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948463

RESUMO

Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais
6.
Food Sci Biotechnol ; 30(4): 583-588, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936850

RESUMO

Vegetable soup (VS), a plant-based functional food, has been used as a traditional folk medicine and is attracting attention for its ability to enhance the immune response. ß-Glucan, a well-established and effective immunomodulator, has synergistic effects when used in combination with some bioactive compounds. In the present study, we aimed to evaluate the synergistic immunomodulatory effects of the combination of VS and ß-glucan on macrophage-mediated immune responses. ß-Glucan was demonstrated to synergistically enhance the VS-stimulated immune response, including the production of interleukin-6, tumor necrosis factor-α, and nitric oxide, mainly through the mitogen-activated protein kinase pathway in macrophages. In addition, this combination has the potential for further development in functional foods with immune-enhancing activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00888-x.

7.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809214

RESUMO

Extracellular vesicles (EVs) are generated and secreted by cells into the circulatory system. Stem cell-derived EVs have a therapeutic effect similar to that of stem cells and are considered an alternative method for cell therapy. Accordingly, research on the characteristics of EVs is emerging. EVs were isolated from human epidural fat-derived mesenchymal stem cells (MSCs) and human fibroblast culture media by ultracentrifugation. The characterization of EVs involved the typical evaluation of cluster of differentiation (CD antigens) marker expression by fluorescence-activated cell sorting, size analysis with dynamic laser scattering, and morphology analysis with transmission electron microscopy. Lastly, the secreted levels of cytokines and chemokines in EVs were determined by a cytokine assay. The isolated EVs had a typical size of approximately 30-200 nm, and the surface proteins CD9 and CD81 were expressed on human epidural fat MSCs and human fibroblast cells. The secreted levels of cytokines and chemokines were compared between human epidural fat MSC-derived EVs and human fibroblast-derived EVs. Human epidural fat MSC-derived EVs showed anti-inflammatory effects and promoted macrophage polarization. In this study, we demonstrated for the first time that human epidural fat MSC-derived EVs exhibit inflammatory suppressive potency relative to human fibroblast-derived EVs, which may be useful for the treatment of inflammation-related diseases.


Assuntos
Diferenciação Celular/genética , Vesículas Extracelulares/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Polaridade Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Quimiocinas/genética , Citocinas/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/terapia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713122

RESUMO

Melatonin, a pineal gland hormone, has been suggested to treat postmenopausal osteoporosis due to its inhibitory effect on osteoclast differentiation. We previously reported that protein arginine methyltransferase 1 (PRMT1) was an important mediator of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the relationship between melatonin and PRMT1 in osteoclast differentiation and estrogen deficiency-induced osteoporosis is unclear. In this study, we investigated the inhibitory mechanisms of melatonin in vitro and in vivo by focusing on PRMT1. Melatonin treatment effectively blocked RANKL-induced osteoclastogenesis by inhibiting PRMT1 and asymmetric dimethylarginine (ADMA) expression. RANKL-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) and the phosphorylation of JNK were also suppressed by melatonin, and TRAF6 siRNA attenuated RANKL-induced p-JNK and PRMT1 production. Melatonin inhibited the transcriptional activity of NF-κB by interfering with the binding of PRMT1 and NF-κB subunit p65 in RANKL-treated bone marrow-derived macrophages. Our results also revealed that melatonin inhibits RANKL-induced PRMT1 expression through receptors-independent pathway. Thus, the anti-osteoclastogenic effect of melatonin was mediated by a cascade of inhibition of RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling in melatonin receptors-independent pathway. In vivo, ovariectomy caused significant decreases in bone mineral density, but melatonin treatment alleviated the ovariectomized (OVX)-induced bone loss by inhibiting bone resorption. Furthermore, the expression PRMT1 and TRAP mRNA was upregulated in OVX-femurs, but effectively suppressed by melatonin injection. These findings suggest that melatonin inhibited osteoclast differentiation and estrogen deficiency-induced osteoporosis by suppressing RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling cascades in melatonin receptors-independent pathway.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Doenças Ósseas Metabólicas/prevenção & controle , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/fisiologia , Osteogênese/efeitos dos fármacos , Ovariectomia/efeitos adversos , Proteína-Arginina N-Metiltransferases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
J Allergy Clin Immunol ; 147(5): 1720-1731, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476674

RESUMO

BACKGROUND: Arginine methylation is a posttranslational modification mediated by protein arginine methyltransferases (PRMTs). Although previous studies have shown that PRMT1 contributes to the severity of allergic airway inflammation or asthma, the underlying mechanism is poorly understood. OBJECTIVE: This study aimed to explore the role of PRMT1 and its relevant mechanism in the development of allergic rhinitis (AR). METHODS: The expression levels of PRMTs and cytokines were determined by RT-PCR, and the localization of PRMT1 was determined by immunohistochemistry and confocal microscopy. The levels of house dust mite (HDM)-specific immunoglobulins in serum and of cytokines in nasal lavage fluids were determined by ELISA. PRMT1 inhibition was achieved by siRNA and treatment with the pan PRMT inhibitor arginine N-methyltransferase inhibitor-1. RESULTS: PRMT1 expression was significantly increased in the nasal mucosa of patients and mice with AR. The degree of eosinophilic infiltration in the nasal mucosa was reduced in PRMT1+/- AR mice compared with wild-type mice. PRMT1 haploinsufficiency reduced the levels of HDM-specific immunoglobulins in serum and those of TH2 (IL-4, IL-5, and IL-13) and epithelial (thymic stromal lymphopoietin [TSLP], IL-25, and IL-33) cytokines in the nasal lavage fluids of AR mice. In nasal epithelial cells, HDM and IL-4 cooperate to enhance PRMT1 expression through a mitogen-activated protein kinase-dependent pathway. In addition, PRMT1 was essential for the production of TSLP, IL-25, and IL-33 in response to HDM and IL-4. Arginine N-methyltransferase inhibitor-1 treatment alleviated AR in the mouse model. CONCLUSIONS: PRMT1 plays an important role in AR development by regulating epithelial-derived cytokine production and might be a new therapeutic target for AR.


Assuntos
Citocinas/imunologia , Células Epiteliais/imunologia , Proteína-Arginina N-Metiltransferases/imunologia , Proteínas Repressoras/imunologia , Rinite Alérgica/imunologia , Alérgenos/imunologia , Animais , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Líquido da Lavagem Nasal/imunologia , Mucosa Nasal/imunologia , Proteína-Arginina N-Metiltransferases/genética , Pyroglyphidae/imunologia
10.
ACS Appl Bio Mater ; 4(2): 1900-1911, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014459

RESUMO

Bone is the rigid tissue that constitutes the skeleton. The material for bone regeneration has to provide the mechanical stability by maintaining the mechanical loads both in the rest conditions and during the body movements. Bone is dynamic tissue constantly reshaped by the action of cells (osteoblasts and osteoclasts). This activity is normally enough to heal bone injuries; however, in several conditions, when bone is subjected to fatal damages, self-renewal is difficult, if not even impossible, and a medical treatment is required. The transplantation of a biomaterial is one of the common surgical procedures to overcome critical injuries. In this study, we exploited the effect of the use of different sources of demineralized bone powder (DBP) in combination with gellan gum (GG) to form a GG-DBP hydrogel scaffold with the purpose of regenerating the bone tissue. DBP was extracted from the femurs of two typologies of Gallus gallus domesticus (the Yeonsan Ogye, a traditional and rare black chicken from Korea, and the Cornish cross, the most common breeds for industrial meat production) and the Pekin duck. The composite scaffold has been tested both in vitro and in vivo. In vitro studies using rat bone marrow-derived mesenchymal stem cells (rBMSCs) confirmed the cellular suitability of bone-specific gene expression for seeded GG-DBP scaffolds, differentiation capacity, and marked upregulation. The scaffold containing a DBP derived from the Yeonsan Ogye (YO) bone showed higher levels of cell proliferation and osteogenic differentiation in comparison with the scaffold with the DBP obtained from the other studied sources. These results have been related with the higher amount of melanin, studied by fluorescence, of the YO DBP compared to Cornish cross and Pekin duck. Overall, this study clearly shows the use of YO DBP as a promising material in bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/farmacologia , Polissacarídeos Bacterianos/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Coelhos , Ratos
11.
ACS Omega ; 5(29): 18021-18027, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743175

RESUMO

In this study, silk fibroin microfiber (mSF) was applied to assist spheroid assemblies of rBMSCs (rabbit bone marrow stem cells) (S/B). Alkaline hydrolysis was induced with different times and conditions to manufacture the various sizes of mSF. The mSF was incorporated in the rBMSC with different amounts to optimize proper content for spheroid assembly. The formation of the S/B was confirmed under optical microscopy and SEM. Proliferation and viability were characterized by CCK-8 and live/dead staining. Osteogenesis was analyzed with ALP (alkaline phosphatase) activity studies and real-time polymerase chain reaction. The S/B was successfully produced and displayed uniformly distributed cells and mSF with the presence of a gap in the structure. Proliferation and viability of the S/B significantly increased when compared to rBMSC spheroids (B), which is potentially due to the enhanced transportation of oxygen and nutrients to the cells located in the core region. Additionally, ALP activity and osteogenic markers were significantly upregulated in the optimized S/B under osteogenic media conditions. Overall, a hybrid-spheroid system with a simple 3D cell culture platform provides a potential approach for engineering therapeutic stem cells.

12.
J Tissue Eng Regen Med ; 14(11): 1592-1603, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32767724

RESUMO

Hydrogels have a large amount of water that provides a cartilage-like environment and is used in tissue engineering with biocompatibility and adequate degradation rates. In order to differentiate stem cells, it is necessary to adjust the characteristics of the matrix such as stiffness, stress-relaxing time, and microenvironment. Double network (DN) hydrogels provide differences in cellular biological behavior and have interpenetrating networks that combine the advantages of the components. In this study, by varying the viscous substrate of pullulan (PL), the DN hydrogels of gellan gum (GG) and PL were prepared to determine the cartilage differentiation of bone marrow stem cell (BMSC). The characteristics of GG/PL hydrogel were investigated by examining the swelling ratio, weight loss, sol fraction, compressive modulus, and gelation temperature. The viability, proliferation, and toxicity of BMSCs encapsulated in hydrogels were evaluated. Cartilage phenotype and cartilage differentiation were confirmed by morphology, GAG content, and cartilage-specific gene expression. Overall results demonstrate that GG/PL hydrogels can form cartilage differentiation of BMSCs and can be applied for tissue engineering purposes.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Condrogênese , Glucanos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Células-Tronco/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/ultraestrutura , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/ultraestrutura , Condrogênese/efeitos dos fármacos , DNA/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Hidrogéis/farmacologia , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura , Viscosidade
13.
Molecules ; 25(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365620

RESUMO

Six new 8-C-p-hydroxybenzylflavonol glycosides were isolated from a hot water extract of pumpkin (Cucurbita moschata Duch.) tendril and elucidated as 8-C-p-hydroxybenzylquercetin 3-O-rutinoside, 8-C-p-hydroxybenzoylquercetin 3-O-ß-D-glucopyranoside, 8-C-p-hydroxybenzylkaempferol 3-O-(α-L-rhamnopyranosyl(1→6)-ß-D-galactopyranoside, 8-C-p-hydroxybenzoylkaempferol 3-O-rutinoside, 8-C-p-hydroxybenzylisorhamnetin 3-O-rutinoside, and 8-C-p-hydroxybenzylisorhamnetin 3-O-(α-L-rhamnopyranosyl(1→6)-ß-D-galactopyranoside. Their chemical structures were determined using nuclear magnetic resonance (NMR) and electrospray ionization-mass spectrometer (ESIMS) analyses. The 8-C-p-hydroxybenzylflavonol glycosides were found to inhibit the receptor activator of nuclear factor-κB (RANKL)-induced osteoclast differentiation of bone marrow derived macrophage (BMDM), an osteoclast progenitor. Additionally, 8-C-p-hydroxybenzylflavonol glycosides effectively reduced the expression of osteoclast-related genes, such as tartrate-resistant acid phosphatase, cathepsin K, nuclear factor activated T-cell cytoplasmic 1, and dendritic cell specific transmembrane protein in RANKL-treated BMDMs. These results indicate that the 8-C-p-hydroxybenzylflavonol glycosides may be the main components responsible for the osteoclast differentiation inhibitory effect of pumpkin tendril.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cucurbita/química , Glicosídeos/farmacologia , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
14.
Int J Med Sci ; 17(8): 1006-1014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410829

RESUMO

Inflammation is the root cause of many diseases that pose a serious threat to human health. Excessive inflammation can also result in preterm birth or miscarriage in pregnant women. Pumpkin (Cucurbita moschata Duchesne, CMD) is a well-known traditional health food and medicinal herb used in many countries to treat diabetes, obesity, osteoporosis, cancer and other diseases. In this study, we investigated the effects of hot water extract derived from the tendrils of C. moschata Duchesne (TCMD) on NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. The TCMD treatment of LPS-primed bone marrow-derived macrophages (BMDMs) and human trophoblast cells attenuated NLRP3 inflammasome activation induced by inflammasome activators such as ATP, nigericin, and monosodium urate (MSU). TCMD treatment suppressed IL-1ß secretion in a dose-dependent manner, without affecting IL-6 secretion. In addition, TCMD inhibited NLRP3-dependent pyroptosis in BMDMs. TCMD also suppressed the release of mature IL-1ß and activation of cleaved-caspase-1 via limited ASC oligomerization. Furthermore, TCMD significantly inhibited IL-1ß secretion and pyroptotic cell death in human trophoblast cells. These results suggest that TCMD exhibits anti-inflammatory effects mediated via inhibition of NLRP3 inflammasome activation suggesting therapeutic potential against inflammatory diseases, preterm birth, and miscarriage.


Assuntos
Cucurbita/química , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Trofoblastos/efeitos dos fármacos , Aborto Espontâneo/imunologia , Aborto Espontâneo/prevenção & controle , Animais , Linhagem Celular , Feminino , Humanos , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/uso terapêutico , Gravidez , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle , Cultura Primária de Células , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Trofoblastos/imunologia
15.
Int J Med Sci ; 17(5): 632-639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210713

RESUMO

Background: Pumpkin (Curcubita sp.) is a natural product that is commonly used in folk medicine. However, the inhibitory effect and molecular mechanisms of tendril of Cucurbita Moschata Duch. (TCMD) on osteoclast differentiation have yet to be clearly elucidated. Thus, the present study aimed to investigate the effect and underlying mechanism of water extract of TCMD on osteoclast differentiation. Methods: Bone marrow-derived macrophages (BMDMs), osteoclast precursors, were cultured with macrophage colony stimulating factor (M-CSF) 30 ng/ml and receptor activator of nuclear factor-kappa B ligand (RANKL) 100 ng/ml for four days. We investigated the effect of TCMD on RANKL-induced osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation, and bone resorption assay. RANKL signaling pathways were determined through Western blotting, and osteoclast differentiation marker genes were confirmed by Real-time PCR. Results: TCMD inhibited the RANKL-induced osteoclast differentiation in a dose-dependent manner without cytotoxicity. Further, F-actin ring formation and bone resorption were reduced by TCMD in RANKL-treated BMDMs. In addition, TCMD decreased the phosphorylation of p38 and ERK as well as the expression of osteoclast-related genes in BMDMs treated with RANKL. Conclusion: These findings suggest that TCMD may have preventive and therapeutic effects for destructive bone diseases.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Cucurbita , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/uso terapêutico , Cultura Primária de Células , Ligante RANK
16.
J Biomed Mater Res A ; 108(3): 784-794, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794132

RESUMO

Treating critical-sized bone defects is an important issue in the field of tissue engineering and bone regeneration. From the various biomaterials for bone regeneration, collagen is an important and widely used biomaterial in biomedical applications, hence, it has numerous attractive properties including biocompatibility, hyper elastic behavior, prominent mechanical properties, support cell adhesion, proliferation, and biodegradability. In the present study, collagen was extracted from duck's feet (DC) as a new collagen source and combined with quercetin (Qtn), a type of flavonoids found in apple and onions and has been reported to affect the bone metabolism, for increasing osteogenic differentiation. Further, improving osteoconductive properties of the scaffold hydroxyapatite (HAp) a biodegradable material was used. We prepared 0, 25, 50, and 100 µM Qtn/DC/HAp sponges using Qtn, DC, and HAp. Their physiochemical characteristics were evaluated using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared spectroscopy. To assess the effect of Qtn on osteogenic differentiation, we cultured bone marrow mesenchymal stem cells on the sponges and evaluated by alkaline phosphatase, 3-4-2, 5-diphenyl tetrazolium bromide assay, and real-time polymerase chain reaction. Additionally, they were studied implanting in rat, analyzed through Micro-CT and histological staining. From our in vitro and in vivo results, we found that Qtn has an effect on bone regeneration. Among the different experimental groups, 25 µM Qtn/DC/HAp sponge was found to be highly increased in cell proliferation and osteogenic differentiation compared with other groups. Therefore, 25 µM Qtn/DC/HAp sponge can be used as an alternative biomaterial for bone regeneration in critical situations.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Durapatita/farmacologia , Transplante de Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Colágeno/química , Patos , Durapatita/química , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Quercetina/química , Coelhos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Colloids Surf B Biointerfaces ; 181: 879-889, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382336

RESUMO

In this study, a double network hydrogel of a natural polysaccharide gellan gum (GG) hydrogel and a synthetic hydrogel poloxamer-heparin (PoH) hydrogel (PoH/GG DNH) is introduced to complement disadvantages of each hydrogel and improve the microenvironment for cell delivery. The microstructure, surface morphology, gelation temperature, swelling and weight loss, sol fraction, mechanical property and thermal stability was examined. The potential of the composite hydrogel for cell vehicle was demonstrated by encapsulation of bone marrow stem cells isolated from rabbits (rBMSCs) within the PoH/GG DNH in vitro. The results showed that the DNH system supported cell survival and retained rBMSCs morphology and phenotype. Moreover, cell distribution, adherence, and ECM production were supported by PoH/GG DNH in vivo. Overall results provide a potential opportunity to apply the composite hydrogels in tissue engineering purpose.


Assuntos
Células da Medula Óssea/citologia , Portadores de Fármacos/química , Heparina/química , Hidrogéis/química , Poloxâmero/química , Polissacarídeos Bacterianos/química , Animais , Sobrevivência Celular , Células Cultivadas , Coelhos , Engenharia Tecidual
18.
Exp Mol Med ; 50(8): 1-15, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154485

RESUMO

Protein arginine methylation is a novel form of posttranslational modification mediated by protein arginine methyltransferase (PRMTs). PRMT1, a major isoform of the PRMT family, is responsible for various biological functions, including cellular differentiation. Although the important function that PRMT1 plays in various tissues is being increasingly recognized, its role in receptor activation of NF-κB ligand (RANKL)-induced osteoclastogenesis or osteoporosis has not yet been described. Here, we show that PRMT1 is essential for RANKL-induced osteoclastogenesis in vitro and for bone loss in vivo. RANKL treatment increased the expression of PRMT1 and its nuclear localization in bone marrow-derived macrophages (BMDMs) in a c-Jun N-terminal kinase (JNK)-dependent manner. Silencing PRMT1 attenuated RANKL-induced osteoclastogenesis by decreasing tartrate-resistant acid phosphatase (TRAP)-positive cells and inhibiting F-actin ring formation and bone resorption, which was confirmed in a separate experiment using haploinsufficient cells from PRMT1+/- mice. Our results also revealed that PRMT1 regulates the transcription activity of NF-κB by directly interacting with it in RANKL-treated BMDMs. An in vivo study showed that the haploinsufficiency of PRMT1 reduced the enzyme activity of TRAP and increased the bone mineral density in the metaphysis of ovariectomized (OVX) mice. Finally, treatment with estrogen (E2) downregulated the RANKL-induced expression of PRMT1, suggesting that estrogen may exert an inhibitory effect on osteoclastogenesis by suppressing PRMT1 expression. Our results suggest that PRMT1 plays an important role in the progression of osteoporosis and that it might be a good therapeutic target for postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea/enzimologia , Reabsorção Óssea/patologia , Osteogênese/efeitos dos fármacos , Ovariectomia , Proteína-Arginina N-Metiltransferases/metabolismo , Ligante RANK/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Haploinsuficiência , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Fenótipo , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Cytokine ; 104: 104-109, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29046251

RESUMO

Mycobacterium tuberculosis is a highly virulent bacterium that causes tuberculosis. It infects about one third of the world's population. Type I interferons (IFNs) play a detrimental role in host defense against M. tuberculosis infection. Proteins secreted by M. tuberculosis through ESX-1 secretion system contribute to type I IFNs production. However, the precise mechanism by which 6-kDa early secretory antigen target (ESAT6), one of ESX-1-mediated secretory proteins, induces type I IFNs production in host cells is currently unclear. Therefore, the objective of the present study was to determine the underlying molecular mechanism regulating ESAT6-mediated gene expression of IFN-ß in macrophages. Recombinant ESAT6 produced from E. coli expression system induced IFN-ß gene expression in various types of macrophages such as mouse bone marrow-derived macrophages (BMDMs), peritoneal macrophages, and MH-S cells (murine alveolar macrophage cell line). Deficiency of TLR4 and TRIF absolutely abrogated ESAT6-induced IFN-ß gene expression. TLR2 and MyD88 were partially involved in IFN-ß gene expression in response to low dose of ESAT6. Another recombinant ESAT6 produced from baculovirus system also upregulated IFN-ß gene expression via TLR4-dependent pathway. Polymyxin B (PMB) treatment impaired LPS-induced IFN-ß expression. However, IFN-ß expression induced by ESAT6 was not influenced by PMB. This suggests that ESAT6-mediated IFN-ß expression is not due to LPS contamination. Treatment with ESAT6 resulted in activation of TBK1 and IRF3 in macrophages. Such activation was abolished in TLR4- and TRIF-deficient cells. Moreover, inhibition of IRF3 and TBK1 suppressed IFN-ß gene expression in response to ESAT6. Our results suggest that ESAT6 might contribute to virulence of M. tuberculosis by regulating type I IFNs production through TLR4-TRIF signaling pathway.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Interferon beta/genética , Macrófagos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Cinética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Phytomedicine ; 34: 6-13, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899511

RESUMO

BACKGROUND: The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. PURPOSE: The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. METHODS: Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. RESULTS: SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. CONCLUSION: These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Carthamus tinctorius/química , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/farmacologia , Actinas/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Flores/química , Isoflavonas/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Ovariectomia , Extratos Vegetais/análise , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA