Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteins ; 92(1): 44-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553948

RESUMO

The activation or inactivation of B-cell lymphoma-2 (Bcl-2) antagonist/killer (Bak) is critical for controlling mitochondrial outer membrane permeabilization-dependent apoptosis. Its pro-apoptotic activity is controlled by intermolecular interactions with the Bcl-2 homology 3 (BH3) domain, which is accommodated in the hydrophobic pocket of Bak. Bcl-2-interacting protein 5 (Bnip5) is a noncanonical BH3 domain-containing protein that interacts with Bak. Bnip5 is characterized by its controversial effects on the regulation of the pro-apoptotic activity of Bak. In the present study, we determined the crystal structure of Bak bound to Bnip5 BH3. The intermolecular association appeared to be typical at first glance, but we found that it is maintained by tight hydrophobic interactions together with hydrogen/ionic bonds, which accounts for their high binding affinity with a dissociation constant of 775 nM. Structural analysis of the complex showed that Bnip5 interacts with Bak in a manner similar to that of the Bak-activating pro-apoptotic factor peroxisomal testis-enriched protein 1, particularly in the destabilization of the intramolecular electrostatic network of Bak. Our structure is considered to reflect the initial point of drastic and consecutive conformational and stoichiometric changes in Bak induced by Bnip5 BH3, which helps in explaining the effects of Bnip5 in regulating Bak-mediated apoptosis.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Domínios Proteicos , Proteína bcl-X/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Apoptose/fisiologia
2.
Molecules ; 28(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005366

RESUMO

Poly(amidoamine) (PAMAM) dendrimers have attracted considerable attention in the field of gene therapy due to their flexibility in introducing different functional moieties and reduced toxicity at low generations. However, their transfection efficiency remains a limitation. Therefore, an essential approach for improving their transfection efficiency as gene carriers involves modifying the structure of PAMAM by conjugating functional groups around their surface. In this study, we successfully conjugated an RRHRH oligopeptide to the surface of PAMAM generation 2 (PAMAM G2) to create RRHRH-PAMAM G2. This construction aims to condense plasmid DNA (pDNA) and facilitate its penetration into cell membranes, leading to its promising potential for gene therapy. RRHRH-PAMAM G2/pDNA complexes were smaller than 100 nm and positively charged. Nano-polyplexes can enter the cell and show a high transfection efficiency after 24 h of transfection. The RRHRH-PAMAM G2 was non-toxic to HeLa, NIH3T3, A549, and MDA-MB-231 cell lines. These results strongly suggest that RRHRH-PAMAM G2 holds promise as a gene carrier for gene therapy owing to its biocompatibility and ability to deliver genes to the cell.


Assuntos
Dendrímeros , Camundongos , Animais , Humanos , Dendrímeros/química , Células NIH 3T3 , DNA/química , Plasmídeos/genética , Transfecção , Oligopeptídeos/química
3.
J Microbiol ; 61(8): 755-764, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37684534

RESUMO

Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/genética , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Quinase 1 Polo-Like
4.
PLoS Biol ; 21(6): e3002156, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315086

RESUMO

Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Masculino , Apoptose/fisiologia , Proteína X Associada a bcl-2 , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo
5.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829996

RESUMO

Targeted drugs have been used to treat mitochondrial dysfunction-related diseases, including metabolic disorders and cancer; however, targeting and penetrating intracellular organelles remains a challenge. Dominant targeting approaches for therapeutic delivery are detailed in many nanoemulsion studies and show the tremendous potential of targeted delivery to inhibit cancer cell growth. Dequalinium (DQA) and α-tocopherol succinate (α-TOS) are good agents for targeting mitochondria. In this study, we aimed to develop a mitochondria-targeting emulsion, using DQA and α-TOS (DTOS), for cancer treatment. DTOS emulsions of 150-170 nm in diameter were formulated using homogenization. DQA and α-TOS were used as bifunctional agents (surfactants) to stabilize the nanoemulsion and anticancer drugs. Various molar ratios of DQA and α-TOS were tested to determine the optimal condition, and DTOS 5-5 was selected for further study. The DTOS emulsion showed improved stability, as evidenced by its ability to remain stable for three years at room temperature. This stability, combined with its effective targeting of mitochondria, led to inhibition of 71.5% of HeLa cells after 24 h. The DTOS emulsion effectively inhibited spheroid growth in the 3D model, as well as prevented the growth of HeLa cells grafted onto zebrafish larvae. These results highlight the DTOS emulsion's promising potential for mitochondria-targeting and cancer treatment.

6.
Macromol Biosci ; 22(11): e2200310, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074994

RESUMO

Catechol and/or pyrogallol groups are recognized as crucial for the formation of polyphenol coatings on various substrates. Meanwhile, studies on polyphenolic molecules that do not contain such groups are relatively rare. The key molecule in turmeric-based universal (i.e., substrate-independent) coatings is curcumin, which contains no catechol or pyrogallol groups. As chemically reactive hydroxyl groups would remain after curcumin coating, it is hypothesized that curcumin coating can serve as a reactive layer for controlling interfacial properties. In this study, a curcumin-based surface modification method is developed to graft polymer brushes from various substrates, including titanium dioxide, gold, glass, stainless steel, and nylon. α-Bromoisobutyryl bromide, a polymerization initiator, is introduced to the curcumin-coated substrates via esterification; subsequently, poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) is grafted from the surfaces. Compared to the control surfaces, poly(OEGMA)-grafted surfaces significantly suppress bacterial adhesion by up to 99.4%, demonstrating their antibacterial properties. Considering its facile and versatile surface modification, curcumin-based polymer grafting can be an efficient method for controlling the chemical/physical properties of surfaces in a substrate-independent manner.


Assuntos
Curcumina , Curcumina/farmacologia , Propriedades de Superfície , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Pirogalol , Polímeros/química , Antibacterianos/farmacologia
7.
Biochem Biophys Res Commun ; 625: 174-180, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964379

RESUMO

Antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins suppress apoptosis by interacting with proapoptotic regulators. They commonly contain a hydrophobic groove where the Bcl-2 homology 3 (BH3) domain of Bcl-2 family members or BH3 domain-containing non-Bcl-2 family proteins can be accommodated. Peroxisomal testis-specific 1 (Pxt1) was previously identified as a male germ cell-specific protein whose overexpression causes germ cell apoptosis and infertility in male mice. Sequence and biochemical analyses also showed that human Pxt1, which is composed of 134 amino acids and is longer than mouse Pxt1 consisting of only 51 amino acids, has a BH3 domain that interacts with antiapoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL. In this study, we determined the crystal structure of Bcl-xL bound to the human Pxt1 BH3 domain. The five BH3 consensus residues are well conserved in the human Pxt1 BH3 domain and make a critical contribution to the complex formation in a canonical manner. Structural and biochemical analyses also demonstrated that Bcl-xL interacts with the BH3 domain of human Pxt1 but not with that of mouse Pxt1, and that residues 76-83 of human Pxt1, absent in mouse Pxt1, play a pivotal role in the intermolecular binding to Bcl-xL. While Bcl-xL consistently colocalized with human Pxt1 in mitochondria, it did not do so with mouse Pxt1, when expressed in HeLa cells. Collectively, these data verified that human and mouse Pxt1 differ in their binding ability to the antiapoptotic regulator Bcl-xL, which might affect their functionality in controlling apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose , Testículo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Testículo/metabolismo , Proteína bcl-X/metabolismo
8.
Pharmaceutics ; 14(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057039

RESUMO

Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)3, RH-(GFLG)3). The self-assembled RH-(GFLG)3 globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)3 nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with d-form peptides (LD (LRH-D(GFLG)3), DL (DRH-L(GFLG)3), and DD (DRH-D(GFLG)3). The RH-(GFLG)3 nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)3 nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)3 peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.

9.
J Biomater Sci Polym Ed ; 33(8): 976-994, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038285

RESUMO

Improving the transfection efficiency of non-viral carriers by using cationic polymers is a useful approach to addressing several challenges in gene therapy, such as cellular uptake, endosomal escape, and toxicity. Among the various cationic polymers, polyamidoamine (PAMAM) dendrimers have been widely utilized because of the abundance of terminal functional groups, thereby enabling further functionalization and enhancing DNA condensation and internalization into cells. The combination of various functional groups is required for these PAMAM dendrimer derivatives to function appropriately for gene delivery. Herein, we synthesized PAMAM G2-HRChol by conjugating dipeptide (histidine-arginine) and cholesterol at different ratios (6% or 23%) on the surface of PAMAM dendrimer generation 2 (PAMAM G2). Both PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% have buffering capacity, leading to improved endosomal escape after entering the cells. PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers were condensed with pDNA to form nano-polyplexes at a weight ratio of 4 (polymer/pDNA). Polyplexes are positively charged, which facilitates cellular uptake. The transfection efficiency of PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers was similar to that of PEI 25 kDa under optimum conditions, and the cytotoxicity was much lower than that of PEI 25 kDa in HeLa cells. In addition, after apoptin gene transfection was performed, cell death ratios of 34.47% and 22.47% were observed for PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23%, respectively. The results show that a suitable amount of cholesterol can improve gene transfection efficiency, and the PAMAM G2-HRChol 6% dendrimer could be a potential gene carrier in HeLa cells.


Assuntos
Dendrímeros , Dendrímeros/química , Dipeptídeos , Técnicas de Transferência de Genes , Células HeLa , Humanos , Poliaminas , Transfecção
10.
ACS Appl Mater Interfaces ; 13(40): 47313-47326, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581558

RESUMO

Dendrimer micelles with glycyrrhizic acid (GA) were developed for anti-inflammatory therapy of acute lung injury (ALI). Cholesterol was conjugated to histidine- and arginine-grafted polyamidoamine (PamHR) for micelle formation. The cholesterol-conjugated PamHR (PamHRchol) was mixed with amphiphilic GA to produce PamHRchol/GA mixed micelles. The GA integrated into the micelles had two functions: it acted as an anti-inflammatory drug and facilitated intracellular gene delivery. The PamHRchol/GA micelles formed stable complexes with plasmid DNA. Integrating GA into the micelles increased their transfection efficiency. Confocal microscopy and flow-cytometry studies confirmed that the PamHRchol/GA micelles improved cellular uptake compared with PamHRchol. A competition assay with free GA suggested that the enhanced transfection efficiency of the micelles might be due to the interaction between GA and its receptor. In addition, GA has a membrane-destabilizing effect, and a chloroquine pretreatment assay confirmed that GA increased endosomal escape. Furthermore, the PamHRchol/GA micelles reduced tumor necrosis factor-α in lipopolysaccharide-activated Raw264.7 cells, suggesting a mechanism for its anti-inflammatory effects. To evaluate the therapeutic potential of the PamHRchol/GA micelles, the heme oxygenase-1 (HO-1) gene was delivered into the lungs of mice with ALI. The PamHRchol/GA micelles had higher gene delivery efficiency into the lungs than polyethylenimine (25 kDa, PEI25k) and the PamHRchol micelles. The combined effects of the HO-1 gene and GA produced effective anti-inflammation response in the lungs of the ALI animals. Therefore, the dual-function PamHRchol/GA micelles, which acted as an anti-inflammatory drug and a gene carrier, could be a useful therapy for inflammatory lung diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Dendrímeros/química , Portadores de Fármacos/química , Ácido Glicirrízico/uso terapêutico , Micelas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , DNA/química , DNA/uso terapêutico , Portadores de Fármacos/síntese química , Técnicas de Transferência de Genes , Terapia Genética , Heme Oxigenase-1/genética , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/química , Plasmídeos/uso terapêutico , Poliaminas/síntese química , Poliaminas/química , Ratos
11.
Korean J Physiol Pharmacol ; 25(5): 467-478, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448464

RESUMO

In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

12.
Int J Biol Macromol ; 185: 87-97, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34144066

RESUMO

The current 2D culture model systems developed for drug screening are not sufficient to reflect the characteristics of in vivo solid tumors. Therefore, more effective in vitro tumor model systems must be developed for translational studies on therapeutic drug screening and testing. Herein, we report a new ultra-low adhesion (ULA) hydrogel for generating 3D cancer cell spheroids as tumor models in vitro. N-octanoyl glycol chitosan (OGC) was synthesized and coated onto the surface of a typical cell culture dish. Cell spheroids were effectively formed on the OGC-coated surface, and phenotypes of the tumor cells were well maintained during culture. More importantly, U373-MG cells cultured on OGC-coated plates were more resistant to doxorubicin than cells cultured on typical plates. Our OGC-based ULA system may offer a convenient method for 3D cell culture to provide enhanced performance in cancer research, drug screening and toxicology.


Assuntos
1-Octanol/química , Neoplasias Encefálicas/tratamento farmacológico , Quitosana/química , Glioblastoma/tratamento farmacológico , Esferoides Celulares/citologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrogéis , Esferoides Celulares/química , Esferoides Celulares/efeitos dos fármacos
13.
J Biomater Sci Polym Ed ; 32(9): 1140-1160, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765897

RESUMO

Polyamidoamine (PAMAM) dendrimers are biocompatible polymers utilized in multiple biomedical applications including tissue engineering, medical diagnosis, drug and gene delivery systems, and biosensors. Normally, high-generation PAMAM dendrimers are advantageous for use in gene therapy research because they have a relatively high transfection efficiency. A high-generation PAMAM dendrimer has a high charge density, which induces greater damage to the membranous organelles than that induced by a low-generation PAMAM dendrimer. In this study, we added NLS sequences derived from the human papillomavirus (HPV) type 11 E2 protein to the low-generation PAMAM generation 2 (PAMAM G2) dendrimer and simultaneously introduced histidine residues to reduce cytotoxicity. RKRARH-PAMAM G2 showed similar and high transfection efficiencies in Neuro-2A and NIH3T3 cell lines and relatively low cytotoxicities relative to that of polyethylenimine 25 kDa (PEI 25 kDa).


Assuntos
Dendrímeros , Sinais de Localização Nuclear , Animais , Sobrevivência Celular , Técnicas de Transferência de Genes , Terapia Genética , Papillomavirus Humano 11 , Humanos , Camundongos , Células NIH 3T3 , Poliaminas
14.
Int J Biol Macromol ; 167: 35-45, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227331

RESUMO

To develop an efficient vector for mitochondria-targeted drug delivery, we synthesized triphenylphosphonium (TPP)-modified glycol chitosan polymeric microspheres that had a unique chemical structure with both lipophilic phenyl groups and cationic phosphonium. Notably, TPP can easily pass through the phospholipid bilayer of mitochondria, thereby resulting in specific accumulation of a combined drug molecule in the mitochondria due to the membrane potential between TPP and its membrane. Therefore, TPP has been widely used as a mitochondria-targeting moiety. Triphenylphosphonium-glycol chitosan derivatives (GC-TPP and GME-TPP) with two different degrees of substitution (11% and 36%) were prepared by amidation and Michael addition. The chemical structures of GC-TPP and GME-TPP were characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their sizes were measured via field emission scanning electron microscopy and dynamic light scattering. Cellular uptake through flow cytometric analysis and confocal microscopy confirmed that both GC-TPP and GME-TPP were well introduced into cells, targeting the mitochondria. In addition, cytotoxicity testing of the most common cell lines, such as HEK293, HeLa, NIH3T3, and HepG2, indicated the absence of polymer toxicity. To evaluate the carrier effectiveness of TPP for drug delivery, doxorubicin (Dox) was used as an anticancer drug. Confocal microscopy images showed that Dox-loaded GME-TPP accumulated inside cells more than Dox-loaded GC-TPP. The anticancer effects of Dox were also determined by MTT assay, apoptosis/necrosis assay, and three-dimensional spheroids. In summary, the results indicate that GC-TPP and GME-TPP microspheres possess great potential as effective drug delivery carriers.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Microesferas , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Técnicas de Química Sintética , Doxorrubicina/administração & dosagem , Humanos , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estrutura Molecular , Terapia de Alvo Molecular , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Tamanho da Partícula , Esferoides Celulares/efeitos dos fármacos
15.
J Biomater Sci Polym Ed ; 32(1): 22-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897813

RESUMO

Polyamidoamine (PAMAM) dendrimer is an extensively studied polymer in the biomedical research because of its low polydispersity, distinct molecular structure, and surface functionalities. Generally, a high-generational PAMAM dendrimer is used for gene delivery because transfection efficiency is dependent on charge density; however, an increase in charge density induces disruption of the cellular membrane, and damage to the membrane results in cytotoxicity. In this study, we selected PAMAM generation 2 to reduce the cytotoxic effect and conjugated RRILH and RRLHL sequences, nuclear localization signals (NLS) derived from herpesviridae to PAMAM generation 2. The transfection efficiency of RRILH-PAMAM G2 and RRLHL-PAMAM G2 was similar to that of polyethylenimine (PEI) in Neuro2A, HT22, and HaCaT cells, whereas their transfection efficiency was much higher than that of PEI in NIH3T3 cells. RRILH-PAMAM G2 showed relatively lower cytotoxicity than did RRLHL-PAMAM G2 in all cell lines, but the transfection capacity of the two polymers was similar. Our study shows that low-generational PAMAM dendrimer conjugated with NLS sequences has potential as an alternative to PEI in gene delivery.


Assuntos
Dendrímeros , Herpesviridae , Animais , Camundongos , Células NIH 3T3 , Sinais de Localização Nuclear , Poliaminas , Transfecção
16.
Pharmaceutics ; 12(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937915

RESUMO

In recent decades, several types of anticancer drugs that inhibit cancer cell growth and cause cell death have been developed for chemotherapeutic application. However, these agents are usually associated with side effects resulting from nonspecific delivery, which may induce cytotoxicity in healthy cells. To reduce the nonspecific delivery issue, nanoparticles have been successfully used for the delivery of anticancer drugs to specific target sites. In this study, a functional polymeric lipid, PEG-GLFG-K(C16)2 (PEG-GLFG, polyethylene glycol-Gly-Leu-Phe-Gly-Lys(C16)2), was synthesized to enable controlled anticancer drug delivery using cathepsin B enzyme-responsive liposomes. The liposomes composed of PEG-GLFG/DOTAP (1,2-dioleoyl-3-trimethylammonium-propane (chloride salt))/DPPC (dipalmitoylphosphatidylcholine)/cholesterol were prepared and characterized at various ratios. The GLFG liposomes formed were stable liposomes and were degraded when acted upon by cathepsin B enzyme. Doxorubicin (Dox) loaded GLFG liposomes (GLFG/Dox) were observed to exert an effective anticancer effect on Hep G2 cells in vitro and inhibit cancer cell proliferation in a zebrafish model.

17.
Langmuir ; 35(45): 14465-14472, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612722

RESUMO

Catechols are prone to oxidative polymerization as well as complex formation with metal ions. These two features of catechols have played an important role in the construction of functional films on various surfaces. For example, marine antifouling films and antibacterial films were successfully prepared by oxidative polymerization and metal complexation of catechol-containing molecules, respectively. However, the effect of simultaneous metal complexation and oxidative polymerization on functional film formation has not yet been fully investigated. Herein, as a derivative of 3-(3,4-dihydroxyphenyl)-l-alanine (DOPA), we synthesized an ethylene glycol-derivatized DOPA (OEG-DOPA) and formed OEG-DOPA thin films based on (1) oxidative polymerization and (2) the complexation between catechol groups of OEG-DOPA and iron(III) (FeIII) ions. Either or both approaches were used for the film formation. OEG-DOPA film formation was characterized by ellipsometry, contact angle goniometry, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Among the conditions used, the formation of a uniform film was only achieved with the dual cross-linking system of FeIII complexation and oxidation-induced covalent bond formation. Compared to the uncoated substrate and other OEG-DOPA films prepared under different conditions, the uniform OEG-DOPA film strongly inhibited bacterial adhesion, showing excellent antibacterial capability. We think that our surface-coating strategy can be applied to medical devices, tools, and implants where bacterial adhesion and biofilm formation should be prevented. This work can also serve as a basis for the construction of functional thin films for other catechol-functionalized materials.


Assuntos
Antibacterianos/síntese química , Etilenoglicol/química , Compostos Férricos/síntese química , Levodopa/química , Antibacterianos/química , Compostos Férricos/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
18.
Polymers (Basel) ; 11(2)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30960280

RESUMO

Highly efficient and safe gene delivery has become an important aspect of neuronal gene therapy. We evaluated the ability of polyamidoamine (PAMAM) dendrimer grafted with phenylalanine, histidine, and arginine (PAMAM-FHR), a nonviral gene delivery vector, to deliver a therapeutic, tumor cell-specific killer gene, apoptin, into the human primary glioma cell line GBL-14 and human dermal fibroblasts. We performed a transfection assay using plasmids of luciferase and enhanced green fluorescent protein (EGFP) and assessed cell viability. Both cell lines were treated with complexes of PAMAM-FHR and apoptin after which their intracellular uptake and localization were examined by fluorescence-activated cell sorting (FACS)analysis and confocal laser scanning microscopy. Confocal microscopy showed that the PAMAM-FHR escaped from the endo-lysosome into the cytosol. Cell cycle phase distribution analysis, annexin V staining, and a tetramethylrhodamine ethyl ester (TMRE) assay established that apoptin triggered apoptosis in the GBL-14 cell line but not in normal fibroblasts. These results indicated that the PAMAM-FHR/apoptin complex is an effective gene vehicle for cancer therapy in vitro.

19.
Int J Biol Macromol ; 132: 451-460, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30930268

RESUMO

Cancer cells divide uncontrollably due to their metabolic imbalance, resistance to mitochondria-mediated apoptosis, and ability to sustain telomere crisis by activating telomere reverse transcriptase. Therefore, mitochondria-mediated cell death has gained considerable attention as an alternative strategy to kill cancer cells. In the present study, an amphiphilic polymer composed of glycol chitosan (GC) and dequalinium (DQA), was synthesized via Michael addition reaction using a methyl acrylate linker and used to target mitochondria. DQA was selected as the mitochondria targeting moiety as well as the lipophilic component of polymer that will self-assemble into nanoparticles in aqueous solvent. GC-DQA nanoparticles were nontoxic compared to positive control when cell viability were assessed in both cancerous and non-cancerous cells. Mitochondria targeting and cell uptake was confirmed by confocal microscopy and flow cytometry, respectively. Curcumin was selected as the anticancer drug and while tested in vitro, the IC50 concentration of the micellar form was 10 µM in cancer cells. These results validate the promising potential of GC-DQA nanoparticles as an efficient mitochondria-targeting drug delivery system for cancer therapy.


Assuntos
Quitosana/química , Dequalínio/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potencial da Membrana Mitocondrial/efeitos dos fármacos
20.
J Nanobiotechnology ; 16(1): 104, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572896

RESUMO

BACKGROUND: Recently, a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) to generate reactive oxygen species (ROS) and heat to kill cancer cells, respectively has attracted considerable attention because it gives synergistic effects on the cancer treatment by utilizing the radiation of nontoxic low-energy photons such as long wavelength visible light and near IR (NIR) penetrating into subcutaneous region. For the effective combination of the phototherapies, various organic photosensitizer-conjugated gold nanocomplexes have been developed, but they have still some disadvantages due to photobleaching and unnecessary energy transfer of the organic photosensitizers. RESULTS: In this study, we fabricated novel inorganic phototherapeutic nanocomplexes (Au NR-TiO2 NCs) by conjugating gold nanorods (Au NRs) with defective TiO2 nanoparticle clusters (d-TiO2 NP clusters) and characterized their optical and photothermal properties. They were observed to absorb a broad range of visible light and near IR (NIR) from 500 to 1000 nm, exhibiting the generation of ROS as well as the photothermal effect for the simultaneous application of PDT and PTT. The resultant combination of PDT and PTT treatments of HeLa cells incubated with the nanocomplexes caused a synergistic increase in the cell death compared to the single treatment. CONCLUSION: The higher efficacy of cell death by the combination of PDT and PTT treatments with the nanocomplexes is likely attributed to the increases of ROS generation from the TiO2 NCs with the aid of local surface plasma resonance (LSPR)-induced hot electrons and heat generation from Au NRs, suggesting that Au NR-TiO2 NCs are promising nanomaterials for the in vivo combinatorial phototherapy of cancer.


Assuntos
Ouro , Nanopartículas Metálicas , Nanotubos/química , Fotoquimioterapia , Titânio , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Células HeLa , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA