Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Stem Cells ; 16(4): 415-424, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37643762

RESUMO

Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

2.
Exp Neurobiol ; 29(3): 189-206, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606250

RESUMO

Neurogenic differentiation 1 (NeuroD1) is a class B basic helix-loop-helix (bHLH) transcription factor and regulates differentiation and survival of neuronal and endocrine cells by means of several protein kinases, including extracellular signal-regulated kinase (ERK). However, the effect of phosphorylation on the functions of NeuroD1 by ERK has sparked controversy based on context-dependent differences across diverse species and cell types. Here, we evidenced that ERK-dependent phosphorylation controlled the stability of NeuroD1 and consequently, regulated proneural activity in neuronal cells. A null mutation at the ERK-dependent phosphorylation site, S274A, increased the half-life of NeuroD1 by blocking its ubiquitin-dependent proteasomal degradation. The S274A mutation did not interfere with either the nuclear translocation of NeuroD1 or its heterodimerization with E47, its ubiquitous partner and class A bHLH transcription factor. However, the S274A mutant increased transactivation of the E-box-mediated gene and neurite outgrowth in F11 neuroblastoma cells, compared to the wild-type NeuroD1. Transcriptome and Gene Ontology enrichment analyses indicated that genes involved in axonogenesis and dendrite development were downregulated in NeuroD1 knockout (KO) mice. Overexpression of the S274A mutant salvaged neurite outgrowth in NeuroD1-deficient mice, whereas neurite outgrowth was minimal with S274D, a phosphomimicking mutant. Our data indicated that a longer protein half-life enhanced the overall activity of NeuroD1 in stimulating downstream genes and neuronal differentiation. We propose that blocking ubiquitin-dependent proteasomal degradation may serve as a strategy to promote neuronal activity by stimulating the expression of neuron-specific genes in differentiating neurons.

3.
Biochem Biophys Res Commun ; 467(4): 1063-9, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26441085

RESUMO

Reelin, a large secreted extracellular matrix glycoprotein, plays a key role in neuronal migration during cortical development and promotes neuronal maturation. The signaling pathway regulating neuronal maturation in the postnatal period are relatively less well understood. In this study, we demonstrated that a heterotrimeric G protein, Go, is a novel target of Reelin-induced signaling to promote neurite outgrowth. In primary hippocampal neurons of Reelin-deficient reeler mice, neurite outgrowth was significantly reduced and rescued upon addition of Reelin. Pertussis toxin (PTX) treatment or transfection with Gαo-siRNA suppressed Reelin-mediated neurite outgrowth in wild-type neurons. Additionally, Reelin treatment led to increased phosphorylation of AKT, GSK3ß, and JNK, which were all effectively blocked by the PI3K inhibitor, LY294002. By comparison, PTX specifically blocked JNK activation, but not AKT and GSK3ß. Immunoprecipitation assays disclosed that Reelin increases the active forms of both Src and Gαo and promotes their direct association. Notably, Dab1, a cytoplasmic adaptor molecule that mediates Reelin signaling, did not interact with Gαo. Neurite outgrowth by Reelin was induced via activating Src kinase, which directly stimulated Gαo, activity, leading to JNK activation. Based on the collective findings, we suggest that Reelin-dependent signaling mechanisms may be split into Src-AKT-dependent and Src-Go-dependent pathways. Our results additionally provide evidence that Reelin receptors cross-communicate with heterologous G protein-coupled receptors (GPCR) independently of the cognate ligands of GPCR.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Camundongos , Proteína Reelina
4.
Neurogenetics ; 9(4): 263-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18704525

RESUMO

Mutations in five PARK genes (SNCA, PARKIN, DJ-1, PINK1, and LRRK2) are well-established genetic causes of Parkinson disease (PD). Recently, G2385R substitution in LRRK2 has been determined as a susceptibility allele in Asian PD. The objective of this study is to determine the frequency of mutations in these PARK genes in a Korean early-onset Parkinson disease (EOPD) cohort. The authors sequenced 35 exons in SNCA, PARKIN, DJ-1, PINK1, and LRRK2 in 72 unrelated EOPD (age-at-onset

Assuntos
Mutação , Doença de Parkinson/genética , Adolescente , Adulto , Idade de Início , Sequência de Bases , Estudos de Casos e Controles , Estudos de Coortes , Análise Mutacional de DNA , Primers do DNA/genética , Feminino , Dosagem de Genes , Heterozigoto , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Coreia (Geográfico) , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Pessoa de Meia-Idade , Proteínas Oncogênicas/genética , Reação em Cadeia da Polimerase , Proteína Desglicase DJ-1 , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Adulto Jovem , alfa-Sinucleína/genética
5.
Proc Natl Acad Sci U S A ; 103(50): 19158-63, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17148597

RESUMO

G(o), a member of the G(o/i) family, is the most abundant heterotrimeric G protein in brain. Most functions of G(o) are mediated by the G(betagamma) dimer; effector(s) for its alpha-subunit have not been clearly defined. Here we report that G(oalpha) interacts directly with cAMP-dependent protein kinase (PKA) through its GTPase domain. This interaction did not inhibit the kinase function of PKA but interfered with nuclear translocation of PKA while sparing its cytosolic function. This regulatory mechanism by which G(o) bifurcates PKA signaling may provide insights into how G(o) regulates complex processes such as neuritogenesis, synaptic plasticity, and cell transformation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Ligação Proteica
6.
Neuroreport ; 16(12): 1357-61, 2005 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16056139

RESUMO

Mesenchymal stem cells are able to trans-differentiate into nonmesodermal lineage cells. Here, we identified downstream signaling molecules required for acquisition of neuron-like traits by mesenchymal stem cells following the elevation of intracellular cAMP levels. We found that forskolin induced neuron-like morphology and expression of neuron-specific enolase and neurofilament-200 in mesenchymal stem cells. Forskolin sequentially activated protein kinase A and B-regulation of alpha-fetoprotein (Raf), which led to phosphorylation of extracellular signal-regulated kinase. Importantly, blockade of extracellular signal-regulated kinase phosphorylation with a mitogen-activated protein kinase (MAPK) kinase inhibitor abrogated the forskolin-induced morphological changes and induction of neuronal proteins. These results indicate that extracellular signal-regulated kinase/MAPK mediates both cAMP-induced early cytoskeletal rearrangement and the later induction of neuronal markers in mesenchymal stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , AMP Cíclico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Adolescente , Western Blotting/métodos , Células Cultivadas , Criança , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Fosforilação/efeitos dos fármacos , Fatores de Tempo , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA