Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Pharm ; 16(1): 165-172, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30521347

RESUMO

A number of cancer-targeting peptide-drug conjugates (PDCs) have been explored as alternatives to antibody-drug conjugates (ADCs) for targeted cancer therapy. However, the much shorter circulation half-life of PDCs compared with ADCs in vivo has limited their therapeutic value and thus their translation into the clinic, highlighting the need to develop new approaches for extending the half-life of PDCs. Here, we report a new strategy for targeted cancer therapy of a PDC based on a molecular hybrid between an antihapten antibody and a hapten-labeled PDC. An anticotinine antibody (Abcot) was used as a model antihapten antibody. The anticancer drug SN38 was linked to a cotinine-labeled aptide specific to extra domain B of fibronectin (cot-APTEDB), yielding the model PDC, cot-APTEDB-SN38. The cotinine-labeled PDC showed specific binding to and cytotoxicity toward an EDB-overexpressing human glioblastoma cell line (U87MG) and also formed a hybrid complex (HC) with Abcot in situ, designated HC[cot-APTEDB-SN38/Abcot]. In glioblastoma-bearing mice, in situ HC[cot-APTEDB-SN38/Abcot] significantly extended the circulation half-life of cot-APTEDB-SN38 in blood, and it enhanced accumulation and penetration within the tumor and, ultimately, inhibition of tumor growth. These findings suggest that the present platform holds promise as a new, targeted delivery strategy for PDCs in anticancer therapy.


Assuntos
Anticorpos/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Peptídeos/química , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Glioma/tratamento farmacológico , Humanos , Imunoconjugados/química , Marcação In Situ das Extremidades Cortadas , Irinotecano/química , Irinotecano/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
2.
Cancer Res ; 78(24): 6890-6902, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30352813

RESUMO

: Although cancer stem cells (CSC) are thought to be responsible for tumor recurrence and resistance to chemotherapy, CSC-related research and drug development have been hampered by the limited supply of diverse, patient-derived CSC. Here, we present a functional polymer thin film (PTF) platform that promotes conversion of cancer cells to highly tumorigenic three-dimensional (3D) spheroids without the use of biochemical or genetic manipulations. Culturing various human cancer cells on the specific PTF, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) (pV4D4), gave rise to numerous multicellular tumor spheroids within 24 hours with high efficiency and reproducibility. Cancer cells in the resulting spheroids showed a significant increase in the expression of CSC-associated genes and acquired increased drug resistance compared with two-dimensional monolayer-cultured controls. These spheroids also exhibited enhanced xenograft tumor-forming ability and metastatic capacity in nude mice. By enabling the generation of tumorigenic spheroids from diverse cancer cells, the surface platform described here harbors the potential to contribute to CSC-related basic research and drug development. SIGNIFICANCE: A new cell culture technology enables highly tumorigenic 3D spheroids to be easily generated from various cancer cell sources in the common laboratory.


Assuntos
Células-Tronco Neoplásicas/citologia , Polímeros/química , Esferoides Celulares/citologia , Animais , Carcinogênese/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Genoma , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Reprodutibilidade dos Testes
3.
ACS Nano ; 12(7): 6904-6916, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29949348

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in psoriatic skin inflammation and acts as a key player in the pathogenesis and progression of this autoimmune disease. Although numerous inhibitors that intervene in STAT3-associated pathways have been tested, an effective, highly specific inhibitor of STAT3 has yet to be identified. Here, we evaluated the in vitro and in vivo biological activity and therapeutic efficacy of a high-affinity peptide specific for STAT3 (APTstat3) after topical treatment via intradermal and transcutaneous delivery. Using a preclinical model of psoriasis, we show that intradermal injection of APTstat3 tagged with a 9-arginine cell-penetrating peptide (APTstat3-9R) reduced disease progression and modulated psoriasis-related cytokine signaling through inhibition of STAT3 phosphorylation. Furthermore, by complexing APTstat3-9R with specific lipid formulations led to formation of discoidal lipid nanoparticles (DLNPs), we were able to achieve efficient skin penetration of the STAT3-inhibiting peptide after transcutaneous administration, thereby effectively inhibiting psoriatic skin inflammation. Collectively, these findings suggest that DLNP-assisted transcutaneous delivery of a STAT3-inhibiting peptide could be a promising strategy for treating psoriatic skin inflammation without causing adverse systemic events. Moreover, the DLNP system could be used for transdermal delivery of other therapeutic peptides.


Assuntos
Sistemas de Liberação de Medicamentos , Inflamação/tratamento farmacológico , Nanopartículas/química , Peptídeos/farmacologia , Psoríase/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Administração Cutânea , Animais , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Peptídeos/administração & dosagem , Psoríase/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
4.
Chemistry ; 24(21): 5623-5629, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29405457

RESUMO

Cysteine plays a crucial role in cellular functions and in human pathologies. However, the development of cysteine probes with extremely accurate detection is still a key challenge for the field. Herein, we have fully characterized and developed a novel selective fluorescent probe: red emission, aqueous detection and large Stokes' shift for cysteine (Reals-C). Key in the probe synthesis is a Michael addition onto an acroylate group and subsequent intramolecular cyclization. The probe exhibits analyte detection via an intricate role set up by the leaving groups so to discriminate and form the red-emissive analyte sensing platform (λex =471 nm, λem =637 nm) through a chemical cascade pathway. Furthermore, the sensing ability of the probe was demonstrated by both in vitro and in vivo assays. This probe enables for successfully endogenous cysteine sensing in HaCaT human keratinocytes through comparison with a commercial thiol-sensitive probe; Reals-C shows excellent in vivo cysteine detection in a drug-induced animal liver injury model.


Assuntos
Cisteína/análise , Corantes Fluorescentes/química , Animais , Doença Hepática Induzida por Substâncias e Drogas , Ciclização , Cisteína/química , Cisteína/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/síntese química , Humanos , Queratinócitos/efeitos dos fármacos , Espectrometria de Fluorescência/métodos , Compostos de Sulfidrila/química
5.
Anal Chem ; 90(4): 2648-2654, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359562

RESUMO

The development of novel fluorescent probes for monitoring the concentration of various biomolecules in living systems has great potential for eventual early diagnosis and disease intervention. Selective detection of competitive species in biological systems is a great challenge for the design and development of fluorescent probes. To improve on the design of fluorescent coumarin-based biothiol sensing technologies, we have developed herein an enhanced dual emission doubly activated system (DACP-1 and the closely related DACP-2) for the selective detection of glutathione (GSH) through the use of one optical channel and the detection of cysteine (Cys) by another channel. A phenylselenium group present at the 4-position completely quenches the fluorescence of the probe via photoinduced electron transfer to give a nonfluorescent species. Probes are selective for glutathione (GSH) in the red region and for cysteine/homocysteine (Cys/Hcy) in the green region. When they were treated with GSH, DACP-1 and DACP-2 showed strong fluorescence enhancement in comparison to that for closely related species such as amino acids, including Cys/Hcy. Fluorescence quantum yields (ΦF) increased for the red channel (<0.001 to 0.52 (DACP-1) and 0.48 (DACP-2)) and green channel (Cys) (<0.001 to 0.030 (DACP-1) and 0.026 (DACP-2)), respectively. Competing fluorescent enhancements upon addition of closely related species were negligible. Fast responses, improved water solubility, and good cell membrane permeability were all properly established with the use of DACP-1 and DACP-2. Live human lung cancer cells and fibroblasts imaged by confocal microscopy, as well as live mice tumor model imaging, confirmed selective detection.


Assuntos
Cisteína/análise , Fibroblastos/química , Corantes Fluorescentes/química , Glutationa/análise , Neoplasias Pulmonares/química , Imagem Óptica , Animais , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacologia , Humanos , Injeções Intravenosas , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Estrutura Molecular , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico por imagem , Células Tumorais Cultivadas
6.
Mol Pharm ; 14(11): 3772-3779, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28969419

RESUMO

Tumor necrosis factor-α has shown potent antitumor effects in preclinical and clinical studies. However, severe side effects at less than therapeutic doses have limited its systemic delivery, prompting the need for a new strategy for targeted delivery of the protein to tumors. Here, we report a fusion protein of mouse tumor necrosis factor (TNF)-α (mTNFα) and a cancer-targeting, high-affinity aptide and investigate its therapeutic efficacy in tumor-bearing mice. A fusion protein consisting of mTNFα, a linker, and an aptide specific to extra domain B (EDB) of fibronectin (APTEDB), designated mTNFα-APTEDB, was successfully produced by expression in Escherichia coli. mTNFα-APTEDB retained specificity and affinity for its target, EDB. In mice bearing EDB-overexpressing fibrosarcomas, mTNFα-APTEDB showed greater efficacy in inhibiting tumor growth than mTNFα alone or mTNFα linked to a nonrelevant aptide, without causing an appreciable loss in body weight. Moreover, in vivo antitumor efficacy was further significantly increased by combination treatment with the chemotherapeutic drug, melphalan, suggesting a synergistic effect attributable to enhanced drug uptake into the tumor as a result of TNFα-mediated enhanced vascular permeability. These results suggest that a fusion protein of mTNFα with a cancer-targeting peptide could be a new anticancer therapeutic option for ensuring potent antitumor efficacy after systemic delivery.


Assuntos
Fibronectinas/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Fibronectinas/química , Fibrossarcoma/tratamento farmacológico , Melfalan/química , Melfalan/metabolismo , Camundongos , Peptídeos/química , Proteínas Recombinantes de Fusão/metabolismo , Fator de Necrose Tumoral alfa/química
7.
J Control Release ; 256: 56-67, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28428066

RESUMO

Although it has been shown that the size of nanoparticle-based vaccines is a key determining factor for the induction of immune responses, few studies have provided detailed analyses of thresholds or critical sizes of nanoparticle vaccines. Here we report effects of the size of gold nanoparticle (GNP)-based vaccines on their efficiency of delivery to lymph nodes (LNs) and induction of CD8+ T-cell responses. We further propose a threshold size of GNPs for use as an effective vaccine. To examine the effects of GNP size, we synthesized GNPs with diameters of 7, 14 and 28nm, and then conjugated them with recombinant ovalbumin (OVA) as a model antigen. The resulting OVA-GNPs had hydrodynamic diameter (HD) of ~10, 22, and 33nm for 7, 14 and 28nm GNPs, respectively and exhibited a size-dependent increase in cellular uptake by dendritic cells (DCs) and subsequent T-cell cross-priming and activation. Upon injection into a mouse footpad, both 22- and 33-nm OVA-GNPs showed much higher delivery efficiency to draining LNs than did 10-nm OVA-GNPs. An ex vivo restimulation assay using OVA as an antigen revealed that frequencies of OVA-specific CD8+ T cells were higher in mice immunized with 22- and 33-nm OVA-GNPs than in those immunized with 10-nm OVA-GNPs; moreover, these cells were shown to be poly-functional. In a tumor-prevention study, 22-nm OVA-GNPs showed greater antitumor efficacy, and higher infiltration of CD8+ T-cells and greater tumor cell apoptosis and cell death than 10-nm OVA-GNPs. Taken together, our results suggest that the size threshold for induction of potent cellular responses and T-cell poly-functionality by GNPs lies between 10nm and 22nm, and highlight the importance of nanoparticle size as a critical parameter in designing and developing nanoparticle-based vaccines.


Assuntos
Antígenos/administração & dosagem , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Ovalbumina/administração & dosagem , Vacinas/administração & dosagem , Animais , Antígenos/química , Antígenos/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Escherichia coli/genética , Feminino , Ouro/química , Linfonodos/metabolismo , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ovalbumina/química , Ovalbumina/genética , Tamanho da Partícula , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Vacinas/química
8.
Biomaterials ; 123: 118-126, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167390

RESUMO

Although PEGylated liposomes (PEG-LS) have been intensively studied as drug-delivery vehicles, the rigidity and the hydrophilic PEG corona of liposomal membranes often limits cellular uptake, resulting in insufficient drug delivery to target cells. Thus, it is necessary to develop a new type of lipid-based self-assembled nanoparticles capable of enhanced cellular uptake, tissue penetration, and drug release than conventional PEGylated liposomes. Herein, we describe a simple modification of bicellar formulation in which the addition of a PEGylated phospholipid produced a dramatic physicochemical change in morphology, i.e., the disc-shaped bicelle became a uniformly distributed ultra-small (∼12 nm) spherical micelle. The transformed lipid-based nanoparticles, which we termed hyper-cell-permeable micelles (HCPMi), demonstrated not only prolonged stability in serum but also superior cellular and tumoral uptake compared to a conventional PEGylated liposomal system (PEG-LS). In addition, HCPMi showed rapid cellular uptake and subsequent cargo release into the cytoplasm of cancer cells. Cells treated with HCPMi loaded with docetaxel (DTX) had an IC50 value of 0.16 µM, compared with 0.78 µM with PEG-LS loaded with DTX, a nearly five-fold decrease in cell viability, indicating excellent efficiency in HCPMi uptake and release. In vivo tumor imaging analysis indicated that HCPMi penetrated deep into the tumor core and achieved greater uptake than PEG-LS. Results of HCPMi (DTX) treatment of allograft and xenograft mice in vivo showed high tumoral uptake and appreciable tumor retardation, with ∼70% tumor weight reduction in the SCC-7 allograft model. Taken together, these findings indicate that HCPMi could be developed further as a highly competent lipid-based drug-delivery system.


Assuntos
Lipossomos/química , Nanocápsulas/química , Neoplasias Experimentais/química , Neoplasias Experimentais/tratamento farmacológico , Taxoides/administração & dosagem , Taxoides/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Docetaxel , Emulsões , Lipossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Resultado do Tratamento
9.
Nanotechnology ; 27(48): 48LT01, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804918

RESUMO

Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.


Assuntos
Nanopartículas , Animais , Antineoplásicos , Linhagem Celular Tumoral , Portadores de Fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias
10.
Theranostics ; 6(13): 2367-2379, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877241

RESUMO

Combination of photodynamic therapy (PDT) with photothermal therapy (PTT) has achieved significantly improved therapeutic efficacy compared to a single phototherapy modality. However, most nanomaterials used for combined PDT/PTT are made of non-biodegradable materials (e.g., gold nanorods, carbon nanotubes, and graphenes) and may remain intact in the body for long time, raising concerns over their potential long-term toxicity. Here we report a new combined PDT/PTT nanomedicine, designated SP3NPs, that exhibit photo-decomposable, photodynamic and photothermal properties. SP3NPs were prepared by self-assembly of PEGylated cypate, comprising FDA-approved PEG and an ICG derivative. We confirmed the ability of SP3NPs to generate both singlet oxygen for a photodynamic effect and heat for photothermal therapy in response to NIR laser irradiation in vitro. Also, the unique ability of SP3NPs to undergo irreversible decomposition upon NIR laser irradiation was demonstrated. Further our experimental results demonstrated that SP3NPs strongly accumulated in tumor tissue owing to their highly PEGylated surface and relatively small size (~60 nm), offering subsequent imaging-guided combined PDT/PTT treatment that resulted in tumor eradication and prolonged survival of mice. Taken together, our SP3NPs described here may represent a novel and facile approach for next-generation theranostics with great promise for translation into clinical practice in the future.


Assuntos
Hipertermia Induzida/métodos , Melanoma/diagnóstico , Melanoma/terapia , Nanopartículas/administração & dosagem , Nanopartículas/química , Imagem Óptica/métodos , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Raios Infravermelhos , Lasers , Camundongos , Resultado do Tratamento
11.
Chem Asian J ; 11(24): 3598-3605, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27863045

RESUMO

Small-molecule organoselenium-based fluorescent probes possess great capacity in understanding biological processes through the detection of various analytes such as reactive oxygen/nitrogen species (ROS/RNS), biothiols (cysteine, homocysteine and glutathione), lipid droplets, etc. Herein, we present how substituents on the BODIPY system play a significant part in the detection of biologically important analytes for in vitro conditions and live cell imaging studies. The fluorescence of the probe was quenched by 2-chloro and 6-phenyl selenium groups; the probe shows high selectivity with NaOCl among other ROS/RNS, and gives a turn-on response. The maximum fluorescence intensity is attained within ≈1-2 min with a low detection limit (19.6 nm), and shows a ≈110-fold fluorescence enhancement compared to signals generated for other ROS/RNS. Surprisingly, in live cell experiments, the probe specifically located and accumulated in lipid droplets, and showed a fluorescence turn-on response. We believe this turn-on response occurred because of aggregation-induced emission (AIE), which surprisingly occurred only by introducing one lipophilic mesityl group at the meso position of the BODIPY.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Compostos Organosselênicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Microscopia Confocal , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/uso terapêutico , Teoria Quântica , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Selênio/química , Espectrometria de Fluorescência , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Raios Ultravioleta
12.
Chemistry ; 22(28): 9642-8, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27243475

RESUMO

Two closely related phenyl selenyl based boron-dipyrromethene (BODIPY) turn-on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron-transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ∼18 and ∼50-fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF-7 cells.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/química , Microscopia Confocal/métodos , Porfobilinogênio/análogos & derivados , Selênio/química , Boro , Linhagem Celular , Fluorescência , Humanos , Limite de Detecção , Células MCF-7 , Oxirredução , Porfobilinogênio/química
13.
Theranostics ; 6(2): 192-203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877778

RESUMO

Although efforts have been made to develop a platform carrier for the delivery of RNAi therapeutics, systemic delivery of siRNA has shown only limited success in cancer therapy. Cationic lipid-based nanoparticles have been widely used for this purpose, but their toxicity and undesired liver uptake after systemic injection owing to their cationic surfaces have hampered further clinical translation. This study describes the development of neutral, small lipid nanoparticles (SLNPs) made of a nontoxic cationic cholesterol derivative, as a suitable carrier of systemic siRNA to treat cancers. The cationic cholesterol derivative, mono arginine-cholesterol (MA-Chol), was synthesized by directly attaching an arginine moiety to cholesterol via a cleavable ester bond. siRNA-loaded SLNPs (siRNA@SLNPs) were prepared using MA-Chol and a neutral helper lipid, dioleoyl phosphatidylethanolamine (DOPE), as major components and a small amount of PEGylated phospholipid mixed with siRNA. The resulting nanoparticles were less than ~50 nm in diameter with neutral zeta potential and much lower toxicity than typical cationic cholesterol (DC-Chol)-based lipid nanoparticles. SLNPs loaded with siRNA against kinesin spindle protein (siKSP@SLNPs) exhibited a high level of target gene knockdown in various cancer cell lines, as shown by measurement of KSP mRNA and cell death assays. Furthermore, systemic injection of siKSP@SLNPs into prostate tumor-bearing mice resulted in preferential accumulation of the delivered siRNA at the tumor site and significant inhibition of tumor growth, with little apparent toxicity, as shown by body weight measurements. These results suggest that these SLNPs may provide a systemic delivery platform for RNAi-based cancer therapy.


Assuntos
Arginina/análogos & derivados , Colesterol/análogos & derivados , Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/efeitos adversos
14.
Adv Healthc Mater ; 5(1): 101-7, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25846396

RESUMO

There is considerable interest in developing a common, universal platform for delivering biomacromolecules such as proteins and RNAs into diverse cells with high efficiency. Here, it is shown that carbon nanosyringe arrays (CNSAs) under an applied centrifugal g-force (cf-CNSAs) can deliver diverse bioactive cargos directly into the cytosol of hard-to-transfect cells with relatively high efficiency and reproducibility. The cf-CNSA platform, an optimized version of a previous CNSA-mediated intracellular delivery platform that adds a g-force feature, exhibits more rapid and superior delivery of cargos to various hard-to-transfect cells than is the case in the absence of g-force. Active species, including small interfering RNAs, plasmids, and proteins are successfully transported across plasma membrane barriers into various cells. By overcoming the limitations of currently available transfection methods, the cf-CNSA platform paves the way to universal delivery of a variety of cargos, facilitating the analysis of cellular responses in diverse cell types.


Assuntos
Carbono/química , Centrifugação , Sistemas de Liberação de Medicamentos/métodos , Gravitação , Espaço Intracelular/metabolismo , Nanopartículas/química , Transfecção , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Theranostics ; 5(7): 746-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897339

RESUMO

Standardized poly(ethylene glycol)-modified (PEGylated) liposomes, which have been widely used in research as well as in pre-clinical and clinical studies, are typically constructed using PEG with a molecular weight of 2000 Da (PEG(2000)). Targeting ligands are also generally conjugated using various functionalized PEG(2000)). However, although standardized protocols have routinely used PEG(2000), it is not because this molecular weight PEG has been optimized to enhance tumor uptake of nanoparticles. Herein, we investigated the effect of various PEG lipid pairings--that is, PEG lipids for targeting-ligand conjugation and PEG lipids for achieving 'stealth' function--on in vitro cancer cell- and in vivo tumor-targeting efficacy. A class of high-affinity peptides (aptides) specific to extra domain B of fibronectin (APT(EDB)) was used as a representative model for a cancer-targeting ligand. We synthesized a set of aptide-conjugated PEGylated phospholipids (APT(EDB)­PEG(2000))­DSPE and APT(EDB)­PEG(2000))­DSPE) and then paired them with methoxy-capped PEGylated phospholipids with diverse molecular weights (PEG(2000)), PEG(2000)), PEG(2000)), and PEG(2000))) to construct various aptide-conjugated PEGylated liposomes. The liposomes with APT(EDB)­PEG(2000))/PEG(2000)) and APT(EDB)­PEG(2000))/PEG(2000)) pairings had the highest uptake in EDB-positive cancer cells. Furthermore, in a U87MG xenograft model, APT(EDB)­PEG(2000))/PEG(2000)) liposomes retarded tumor growth to the greatest extent, followed closely by APT(EDB)­PEG(2000))/PEG(2000)) liposomes. Among the PEGylated liposomes tested, pairs in which the methoxy-capped PEG length was about half that of the targeting ligand-displaying PEG exhibited the best performance, suggesting that PEG pairing is a key consideration in the design of drug-delivery vehicles.


Assuntos
Antineoplásicos/administração & dosagem , Lipossomos/química , Peptídeos/administração & dosagem , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Lipossomos/efeitos adversos , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfolipídeos/química
16.
Chem Sci ; 6(10): 5435-5439, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28757944

RESUMO

A phenyl-selenium-substituted coumarin probe was synthesized for the purpose of achieving highly selective and extremely rapid detection of glutathione (GSH) over cysteine (Cys)/homocysteine (Hcy) without background fluorescence. The fluorescence intensity of the probe with GSH shows a ∼100-fold fluorescent enhancement compared with the signal generated for other closely related amino acids, including Cys and Hcy. Importantly, the substitution reaction with the sulfhydryl group of GSH at the 4-position of the probe, which is doubly-activated by two carbonyl groups, occurs extremely fast, showing subsecond maximum fluorescence intensity attainment; equilibrium was reached within 100 ms (UV-vis). The probe selectivity for GSH was confirmed in Hep3B cells by confocal microscopy imaging.

17.
Cancer Res ; 74(8): 2144-51, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24576829

RESUMO

STAT3 promotes the survival, proliferation, metastasis, immune escape, and drug resistance of cancer cells, making its targeting an appealing prospect. However, although multiple inhibitors of STAT3 and its regulatory or effector pathway elements have been developed, bioactive agents have been somewhat elusive. In this report, we report the identification of a specific STAT3-binding peptide (APTSTAT3) through phage display of a novel "aptide" library. APTSTAT3 bound STAT3 with high specificity and affinity (∼231 nmol/L). Addition of a cell-penetrating motif to the peptide to yield APTSTAT3-9R enabled uptake by murine B16F1 melanoma cells. Treatment of various types of cancer cells with APTSTAT3-9R blocked STAT3 phosphorylation and reduced expression of STAT targets, including cyclin D1, Bcl-xL, and survivin. As a result, APTSTAT3-9R suppressed the viability and proliferation of cancer cells. Furthermore, intratumoral injection of APTSTAT3-9R exerted potent antitumor activity in both xenograft and allograft tumor models. Our results offer a preclinical proof-of-concept for APTSTAT3 as a tractable agent for translation to target the broad array of cancers harboring constitutively activated STAT3.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transdução de Sinais , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Control Release ; 178: 118-24, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24462899

RESUMO

Targeted delivery of anticancer drugs to tumors has attracted considerable research interest because of its potential to reduce adverse toxicity while improving therapeutic efficacy. In this study, we synthesized and evaluated the therapeutic efficacy of a conjugate of a high-affinity peptide (aptide) and the anticancer drug docetaxel (DTX). A fibronectin extra domain B (EDB)-specific aptide (APTEDB) was used as a cancer-specific targeting ligand. An APTEDB-DTX conjugate was synthesized from an alkyne-modified aptide and azide-modified DTX via click chemistry. A microscopy study revealed selective binding of dye-labeled APTEDB to EDB-overexpressing cancer cells. The cytotoxicity of the conjugate toward EDB-overexpressing murine lung carcinoma (LLC) and human glioblastoma (U87MG) was similar to that of free DTX. In a pharmacokinetic study, APTEDB-DTX formulated with PEG400/ethanol(5%) exhibited a circulation half-life similar to that of a Tween-80/ethanol formulation of parent DTX. Finally, an evaluation of intravenously injected APTEDB-DTX in mice bearing EDB-positive tumors showed that APTEDB-DTX inhibited the growth of both LLC allograft and U87MG xenograft tumors with an efficacy better than the parent-DTX formulation but with much lower toxicity, as evidenced by reduced body weight loss. Taken together, these results indicate that the aptide-drug conjugate system described here may hold potential as a targeted therapy regimen.


Assuntos
Antineoplásicos/administração & dosagem , Fibronectinas/química , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Taxoides/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Docetaxel , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Peptídeos/farmacocinética , Estrutura Terciária de Proteína , Taxoides/química , Taxoides/farmacocinética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA