Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 44(7): 2847-2859, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925815

RESUMO

BACKGROUND/AIM: Human melanoma-associated antigen A2 (hMAGEA2) family members play several roles in many types of cancer and have been explored as potential prognostic markers. In this study, we investigated the molecular mechanism underlying hMAGEA2-mediated tumorigenesis of prostate cancer. MATERIALS AND METHODS: Immunohistochemistry and western blot were used to assess protein expression whereas microarray and quantitative reverse transcription-PCR determined mRNA expression. CCK-8 assay was used to determine cell proliferation. Colony formation assay was used to examine tumorigenesis. Migration and invasion were examined using a transwell assay. Propidium iodide (PI)/Annexin V double staining was performed to measure apoptosis. Transcriptional activity was measured using Dual-luciferase reporter assay. RESULTS: hMAGEA2 was highly over-expressed in human prostate cancer tissues compared to benign prostatic hyperplasia tissues. To elucidate its biological function in prostate cancer, we established two stable hMAGEA2-knockdown prostate cancer cell lines, PC3M and 22RV1, and found that they presented significantly decreased proliferation, anchorage-independent colony formation, migration, and invasion. As hMAGEA2 knockdown suppressed prostate cancer cell growth, we examined its potential influence on tumor apoptosis. hMAGEA2-knockdown cell lines displayed early apoptosis. Moreover, knockdown of hMAGEA2 resulted in the down-regulation of EFNA3 expression. Luciferase assay showed that hMAGEA2 bound to the EFNA promoter region and regulated its transcription. Down-regulation of EFNA3 expression led to decreased Ras/Braf/MEK/Erk1/2 phosphorylation and, consequently, inhibited prostate cancer progression. CONCLUSION: hMAGEA2 promotes prostate cancer growth, metastasis, and tumorigenesis by regulating the EFNA3-Erk1/2 signaling pathway, indicating its potential as a therapeutic marker for prostate cancer.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Sistema de Sinalização das MAP Quinases , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição
2.
Am J Chin Med ; 51(5): 1309-1333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37385965

RESUMO

Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. We investigated the anticancer effects of veratramine on AIPC using PC3 and DU145 cell lines, as well as a xenograft mouse model. The antitumor effects of veratramine were evaluated using the CCK-8, anchorage-independent colony formation, trans-well, wound healing assays, and flow cytometry in AIPC cell lines. Microarray and proteomics analyses were performed to investigate the differentially expressed genes and proteins induced by veratramine in AIPC cells. A xenograft mouse model was used to confirm the therapeutic response and in vivo efficacy of veratramine. Veratramine dose dependently reduced the proliferation of cancer cells both in vitro and in vivo. Moreover, veratramine treatment effectively suppressed the migration and invasion of PC cells. The immunoblot analysis revealed that veratramine significantly downregulated Cdk4/6 and cyclin D1 via the ATM/ATR and Akt pathways, both of which induce a DNA damage response that eventually leads to G1 phase arrest. In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Androgênios/farmacologia , Androgênios/uso terapêutico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Ciclo Celular , Linhagem Celular Tumoral , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/farmacologia
3.
Vet Med Sci ; 9(3): 1053-1061, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748292

RESUMO

BACKGROUND: Most extramedullary plasmacytomas (EMPs) aresolitary and located in the head and neck region. They may also occur in the visceral parts of the body. OBJECTIVES: Here, we report a case of oral EMP followed by neoplastic plasma cell metastasis to both kidneys in a neutered male Pomeranian. METHODS: Oral plasmacytoma recurred 11 months aftersurgical removal of an oral mass and partial maxillectomy was performed. Eighteen months after partial maxillectomy, neoplastic masses were detected in both kidneys on computed tomography. The dog died 12 months after detection of bilateral kidney neoplasms. The resected neoplastic masses were routinely processed for histopathological observation and immunohistochemistry against pan-cytokeratin, desmin, CD3, and MUM-1. RESULTS: The recurred mass mainly consisted of well-differentiated plasma cells and contained a small portion of aggressive cells with malignant features. Monoclonal gammopathy was not observed on serumelectrophoresis performed to exclude multiple myeloma. The mass was composed of plasma cells with high nuclear pleomorphism and abundant mitotic figures. The neoplasm stained positive for MUM-1 with a more aggressive morphology than in oral EMP. CONCLUSION: Based on serum biomarker and pathological observations, a diagnosis of recurrence and metastasis of oral-to-renal EMP was established. To the best of our knowledge, metastasis of oral EMP into the bilateral kidneys, as described in the current case, has not been previously reported in dogs.


Assuntos
Doenças do Cão , Plasmocitoma , Masculino , Cães , Animais , Plasmocitoma/diagnóstico , Plasmocitoma/cirurgia , Plasmocitoma/veterinária , Boca/patologia , Tomografia Computadorizada por Raios X , Rim , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/cirurgia
4.
Biochem Biophys Res Commun ; 635: 99-107, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265288

RESUMO

Although several studies have focused on cancer diagnosis and therapy, prostate cancer (PC) remains an intractable disease. Androgen deprivation therapy (ADT), which is used to treat early stage PC can lead to the development of castration-resistant prostate cancer (CRPC), which is highly associated with androgen receptor (AR) mutations. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a chaperone that shuttles between the nucleus and the cytoplasm. Studies suggest that NOLC1 regulates PC progression; however, the underlying mechanisms remain unclear. Herein, we showed that NOLC1 knockdown suppresses PC cell proliferation by altering the signaling pathways and the expression of various proteins involved in DNA replication, amino acid metabolism, and RNA processing. Mechanistically, NOLC1 knockdown suppressed cell cycle progression by inhibiting AKT phosphorylation and ß-catenin accumulation. Finally, we showed that NOLC1 expression is higher in human PC than in human hyperplastic prostate tissues. Altogether, we demonstrated that NOLC1 knockdown suppresses the progression of both AR-positive and AR-negative PC cells by inducing changes in the expression of several genes leading to cell cycle arrest. Thus, NOLC1 might be a novel and promising therapeutic target for PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , beta Catenina , Masculino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosforilação , Antagonistas de Androgênios , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo
5.
J Ginseng Res ; 46(3): 396-407, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600769

RESUMO

Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

6.
Differentiation ; 125: 18-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349880

RESUMO

Mouse embryonic stem cells (mESCs) are characterized by self-renewal and pluripotency and can undergo differentiation into the three germ layers (ectoderm, mesoderm, and endoderm). Melanoma-associated antigen D1 (Maged1), which is expressed in all developing and adult tissues, modulates tissue regeneration and development. In the present study, we examined the expression and function of Maged1 in mESCs. Maged1 protein and mRNA expression increased during mESC differentiation. The pluripotency of mESCs was significantly reduced through extracellular signal-regulated kinase 1/2 phosphorylation upon knockdown of Maged1, and through G1 cell cycle arrest during cell division, resulting in significantly reduced mESC proliferation. Moreover, the diameter of the embryoid bodies was significantly reduced, accompanied by increased levels of ectodermal differentiation markers and decreased levels of mesodermal and endodermal differentiation markers. Maged1-knockdown mESC lines showed significantly reduced teratoma volumes and inhibition of teratoma formation in nude mice. Additionally, we observed increased ectodermal markers but decreased mesodermal and endodermal markers in teratoma tissues. These findings show that Maged1 affects mESC pluripotency, proliferation, cell cycle, and differentiation, thereby contributing to our understanding of the basic molecular biological mechanisms and potential roles of Maged1 as a regulator of various mESC properties.


Assuntos
Células-Tronco Embrionárias Murinas , Animais , Antígenos de Diferenciação/metabolismo , Ciclo Celular/genética , Morte Celular , Diferenciação Celular/genética , Divisão Celular , Camundongos , Camundongos Nus , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia
7.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204073

RESUMO

The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.

8.
J Cell Biochem ; 123(3): 547-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958137

RESUMO

Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.


Assuntos
Células-Tronco Embrionárias Murinas , Canais de Cátion TRPM , Animais , Diferenciação Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Interferente Pequeno/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
9.
Life Sci ; 288: 120170, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826438

RESUMO

AIMS: Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS: Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS: Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE: Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alcaloides de Veratrum/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960969

RESUMO

Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 µg/mL (4.18 × 10-4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.

11.
J Exp Clin Cancer Res ; 40(1): 291, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537073

RESUMO

BACKGROUND: The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. METHODS: We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. RESULTS: We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function-based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-ß signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. CONCLUSIONS: Our findings suggest that ZNF507 is a novel key regulator of TGF-ß signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose/genética , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Modelos Biológicos , Prognóstico , Neoplasias da Próstata/etiologia
12.
Am J Cancer Res ; 11(4): 1410-1427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948365

RESUMO

Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.

13.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946531

RESUMO

Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial-mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.

14.
In Vivo ; 35(3): 1473-1483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910825

RESUMO

BACKGROUND/AIM: The pathological role of vascular endothelial growth factor receptor 2 (VEGFR-2) in chronic liver injury and liver regeneration is not fully understood. This study analysed the role of VEGFR-2 in liver fibrosis and its regeneration process. MATERIALS AND METHODS: We administered intraperitoneally 50 mg/kg to 300 mg/kg thioacetamide (TAA) to 9-week-old male mice for 17 weeks. We measured levels of VEGFR-2 protein and identified the location of cells that specifically express VEGFR-2. RESULTS: VEGFR-2 is rarely expressed in normal hepatocytes. However, high VEGFR-2 expression in liver sinusoidal endothelial cells was noted in the TAA group. Conversely, the group that experienced regeneration from liver fibrosis showed significantly higher VEGFR-2 expression in the nucleus of hepatocytes compared to the other groups. CONCLUSION: VEGFR-2 plays a pivotal role in the nucleus of hepatocytes during liver regeneration and VEGFR-2 may be closely related to cell division. Therefore, VEGFR-2 may be a new therapeutic target for liver regeneration.


Assuntos
Regeneração Hepática , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Proliferação de Células , Hepatócitos , Fígado , Masculino , Camundongos , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
15.
J Exp Clin Cancer Res ; 40(1): 114, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785035

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS: Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS: CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS: Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Apoptose , Feminino , Humanos , Camundongos , Sesquiterpenos/farmacologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652881

RESUMO

Senescence marker protein 30 (SMP30) is a cell survival factor playing an important role in vitamin C synthesis and antiapoptosis. Moreover, its cytoprotective role suggests a possibility to be related to cancer cell survival. Mammary carcinoma is a common cancer in both humans and animals. Because of its histopathological diversity, especially in the early stage, histopathological diagnosis may be complicated; therefore, a diagnostic marker is helpful for confirmation. The present study analyzed the expression pattern of SMP30 in mammary carcinoma in humans, dogs, and cats. Immunohistochemistry, immunofluorescence, and western blot analysis were used to investigate SMP30 expression patterns. The expression was specifically observed in neoplastic glandular epithelial cells. The expression increased with the malignancy of glandular epithelial cells with a highly proliferative status. However, SMP30 expression was low in normal mammary gland tissues or well-differentiated adenoma tissues. The patterns were consistently reproduced in canine primary mammary carcinoma cells and MCF-7 and MDA-MB-231 human carcinoma cell lines. This study provides useful information to understand SMP30 expression in various stages of mammary carcinoma and to suggest its utility as a pan-species diagnostic marker, thereby helping to establish strategies for diagnosing mammary carcinoma in several species.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/análise , Doenças do Gato/patologia , Doenças do Cão/patologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Neoplasias Mamárias Animais/patologia , Animais , Biomarcadores Tumorais/análise , Mama/patologia , Neoplasias da Mama/diagnóstico , Doenças do Gato/diagnóstico , Gatos , Linhagem Celular Tumoral , Doenças do Cão/diagnóstico , Cães , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/diagnóstico , Prognóstico
17.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649861

RESUMO

Ginsenoside Rh2 (G­Rh2) is a natural bioactive product derived from Panax ginseng Meyer (P. ginseng). G­Rh2 exhibits anticancer activity in various human cancer cell lines both in vitro and in vivo by modulating several signaling pathways, such as those of PDZ­binding kinase/T­LAK cell­originated protein kinase, phosphatidylinositol 3­kinase, protein kinase B, mammalian target of rapamycin, epidermal growth factor receptor, p53, and reactive oxygen species. Moreover, G­Rh2 could effectively reverse drug resistance and enhance therapeutic effects in cancer therapy. This review summarizes the chemical properties, in vitro and in vivo anticancer activity, and underlying molecular mechanisms of G­Rh2 to facilitate cancer chemoprevention studies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ginsenosídeos/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Ginsenosídeos/uso terapêutico , Humanos , Neoplasias/patologia , Panax/química , Transdução de Sinais/efeitos dos fármacos
18.
FEBS J ; 288(14): 4412-4427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33555104

RESUMO

Genetic susceptibility of type 2 diabetes and Juxtaposed with another zinc finger protein 1 (Jazf1) has been reported; however, the precise role of Jazf1 in metabolic processes remains elusive. In this study, using Jazf1-knockout (KO)-induced pluripotent stem cells (iPSC), pancreatic beta cell line MIN6 cells, and Jazf-1 heterozygous KO (Jazf1+/- ) mice, the effect of Jazf1 on gradual differentiation was investigated. We checked the alterations of the genes related with ß-cell specification, maturation, and insulin release against glucose treatment by the gain and loss of the Jazf1 gene in the MIN6 cells. Because undifferentiated Jazf1-KO iPSC were not significantly different from wild-type (WT) iPSC, the size and endoderm marker expression after embryoid body (EB) and teratoma formation were investigated. Compared to EB and teratomas formed with WT iPSC, the EB and teratomas from with Jazf1-KO iPSC were smaller, and in teratomas, the expression of proliferation markers was reduced. Moreover, the expression of the gene sets for ß-cell differentiation and the levels of insulin and C-peptide secreted by insulin precursor cells were notably reduced in ß-cells differentiated from Jazf1-KO iPSC compared with those differentiated from WT iPSC. A comparison of Jazf1+/- and WT mice showed that Jazf1+/- mice had lower levels of serum insulin, pancreatic insulin expression, and decreased pancreatic ß-cell size, which resulted in defects in the glucose homeostasis. These findings suggest that Jazf1 plays a pivotal role in the differentiation of ß-cells and glucose homeostasis.


Assuntos
Diferenciação Celular , Proteínas Correpressoras/fisiologia , Proteínas de Ligação a DNA/fisiologia , Glucose/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/citologia , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Animais , Células Cultivadas , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese
19.
Cell Biochem Funct ; 39(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529664

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent cells that possess the ability to self-renew and differentiate into three germ layers. Owing to these characteristics, mESCs act as important models for stem cell research and are being used in many clinical applications. Among the many cathepsins, cathepsin A (Ctsa), a serine protease, affects the function and properties of stem cells. However, studies on the role of Ctsa in stem cells are limited. Here, we observed a significant increase in Ctsa expression during mESC differentiation at protein levels. Furthermore, we established Ctsa knockdown mESCs. Ctsa knockdown led to Erk1/2 phosphorylation, which in turn inhibited the pluripotency of mESCs and induced G2/M cell cycle arrest to inhibit mESC proliferation. The knockdown also induced abnormal differentiation in mESCs and aberrant expression of differentiation markers. Furthermore, we identified inhibition of teratoma formation in nude mice. Our results suggested that Ctsa affects mESC pluripotency, proliferation, cell cycle and differentiation, and highlighted the potential of Ctsa to act as a core factor that can regulate various mESC properties. SIGNIFICANCE OF THE STUDY: Our results indicate that cathepsin A (Ctsa) affects the properties of mESCs. Inhibition of Ctsa resulted in a decrease in the pluripotency of mouse embryonic stem cells (mESCs). Further, Ctsa suppression resulted in decreased proliferation via cell cycle arrest. Moreover, Ctsa inhibition reduced differentiation abilities and formation of teratoma in mESCs. Our results demonstrated that Ctsa is an important factor controlling mESC abilities.


Assuntos
Catepsina A/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/enzimologia , Animais , Catepsina A/genética , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia
20.
J Comp Pathol ; 180: 1-4, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33222865

RESUMO

Myofibromas are mesenchymal tumours of myofibroblastic origin that occur in solitary or multicentric forms. Solitary benign myofibromas mainly occur on the head and neck, especially in the subcutaneous region. They rarely occur in visceral organs in humans, but visceral myofibroma has not been reported in animals. We now report a case of testicular myofibroma in a 6-year-old rabbit in which orchiectomy revealed an enlarged testis with a multinodular surface. The cut surface of the testis showed a thick, homogeneous white-yellow mass surrounding the testicular parenchyma. Histopathologically, the mass was composed of collagen and eosinophilic fascicles of spindle cells that were immunopositive for α-smooth muscle actin but not desmin, S-100 or von Willebrand factor. These features distinguished the myofibroma from other spindle cell tumours. To the best of our knowledge, this is the first report of solitary testicular myofibroma in any animal species.


Assuntos
Miofibroma , Testículo/patologia , Animais , Masculino , Miofibroma/diagnóstico , Miofibroma/veterinária , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA