Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 93, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867333

RESUMO

Choroid plexus tumors (CPTs) are intraventricular tumors derived from the choroid plexus epithelium and occur frequently in children. The aim of this study was to investigate the genomic and epigenomic characteristics of CPT and identify the differences between choroid plexus papilloma (CPP) and choroid plexus carcinoma (CPC). We conducted multiomics analyses of 20 CPT patients including CPP and CPC. Multiomics analysis included whole-genome sequencing, whole-transcriptome sequencing, and methylation sequencing. Mutually exclusive TP53 and EPHA7 point mutations, coupled with the amplification of chromosome 1, were exclusively identified in CPC. In contrast, amplification of chromosome 9 was specific to CPP. Differential gene expression analysis uncovered a significant overexpression of genes related to cell cycle regulation and epithelial-mesenchymal transition pathways in CPC compared to CPP. Overexpression of genes associated with tumor metastasis and progression was observed in the CPC subgroup with leptomeningeal dissemination. Furthermore, methylation profiling unveiled hypomethylation in major repeat regions, including long interspersed nuclear elements, short interspersed nuclear elements, long terminal repeats, and retrotransposons in CPC compared to CPP, implying that the loss of epigenetic silencing of transposable elements may play a role in tumorigenesis of CPC. Finally, the differential expression of AK1, regulated by both genomic and epigenomic factors, emerged as a potential contributing factor to the histological difference of CPP against CPC. Our results suggest pronounced genomic and epigenomic disparities between CPP and CPC, providing insights into the pathogenesis of CPT at the molecular level.


Assuntos
Carcinoma , Neoplasias do Plexo Corióideo , Papiloma do Plexo Corióideo , Humanos , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/patologia , Neoplasias do Plexo Corióideo/metabolismo , Feminino , Masculino , Papiloma do Plexo Corióideo/genética , Papiloma do Plexo Corióideo/patologia , Criança , Pré-Escolar , Carcinoma/genética , Carcinoma/patologia , Metilação de DNA , Lactente , Adolescente , Multiômica
2.
J Korean Neurosurg Soc ; 66(6): 642-651, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37138505

RESUMO

OBJECTIVE: Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. METHODS: ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated ß-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. RESULTS: The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. CONCLUSION: Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

3.
Sci Rep ; 13(1): 682, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639714

RESUMO

Dysembryoplastic neuroepithelial tumor (DNET) is a low-grade brain tumor commonly associated with drug-resistant epilepsy. About half of DNETs are accompanied by tiny nodular lesions separated from the main mass. The existence of these satellite lesions (SLs) has shown a strong association with tumor recurrence, suggesting that they are true tumors. However, it is not known whether SLs represent multiple foci of progenitor tumor cell extension and migration or a multifocal development of the main DNET. This study was designed to elucidate the histopathology and pathogenesis of SLs in DNETs. Separate biopsies from the main masses and SLs with DNET were analyzed. We performed comparative lesion sequencing and phylogenetic analysis. FGFR1 K656E and K655I mutations or duplication of the tyrosine kinase domain was found in all 3 DNET patients and the main masses and their SLs shared the same FGFR1 alterations. The phylogenic analysis revealed that the SLs developed independently from their main masses. It is possible that the main mass and its SLs were separated at an early stage in oncogenesis with shared FGFR1 alterations, and then they further expanded in different places. SLs of DNET are true tumors sharing pathogenic mutations with the main masses. It is plausible that multifocal tumor development takes place in the dysplastic cortex containing cells with a pathogenic genetic alteration.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Neuroepiteliomatosas , Criança , Humanos , Filogenia , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Recidiva Local de Neoplasia , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Imageamento por Ressonância Magnética
5.
BMC Cancer ; 22(1): 1221, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36437460

RESUMO

PURPOSE: Molecular subgrouping of medulloblastoma has become important due to its impact on risk group stratification. Immunohistochemistry (IHC) has been widely used but it has innate limitations. The NanoString assay has been proposed as an alternative method. This study aims to present the characteristics of medulloblastoma subgrouped by the NanoString assay and to compare the subgrouping results with the IHC method. METHODS: Pediatric patients with histological diagnosis of medulloblastoma who underwent surgery from 2007 to 2021 were included. Clinical characteristics, pathological findings were reviewed. Molecular subgrouping was performed by IHC and by NanoString nCounter Elements TagSets assay. Test for concordance between two methods was made. RESULTS: Among a total of 101 patients analyzed, subgrouping using the NanoString assay resulted in 14 (13.8%) WNT, 20 (19.8%) SHH, 18 (17.8%) Group 3, and 39 (38.6%) Group 4 subgroup cases. Survival analysis revealed the following from best to worse prognosis: WNT, Group 4, SHH, and Group 3. In SHH subgroup the large cell/anaplastic histology was present in 30% of cases. Seventy-one cases were analyzed for concordance between NanoString and IHC. Cohen's kappa value indicated moderate agreement but identification of Groups 3 and 4 with IHC using NPR3 and KCNA1 markers exhibited poor results. CONCLUSIONS: The NanoString assay of Korean medulloblastoma patients revealed a more aggressive clinical course in the SHH subgroup which may be explained by a higher proportion of large cell/anaplastic histology being present in this subgroup. IHC did not distinguish Group 3 or 4 accurately. The NanoString assay may represent a good alternative method for practical use in the clinical field.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Imuno-Histoquímica , Prognóstico , Análise de Sobrevida
6.
Genome Med ; 14(1): 88, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953846

RESUMO

BACKGROUND: The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. METHODS: Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. RESULTS: We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. CONCLUSIONS: This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.


Assuntos
Glioma , Telomerase , Glioma/genética , Humanos , Mutação , Telomerase/genética , Telômero/genética , Homeostase do Telômero
7.
Pharmaceutics ; 14(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214110

RESUMO

Effective penetration into cells, or binding to cell membranes is an essential property of an effective nanoparticle drug delivery system (DDS). Nanoparticles are generally internalized through active transport mechanisms such as apoptosis, and cargo can be released directly into the cytoplasm. A metal-organic framework (MOF) is a network structure consisting of metal clusters connected by organic linkers with high porosity; MOFs provide a desirable combination of structural features that can be adjusted with large cargo payloads, along with Cu, Co, and Zn-MOFs, which have the chemical stability required for water-soluble use. Bioactive MOFs containing copper, cobalt, and zinc were prepared by modifying previous methods as therapeutic drugs. Their structures were characterized via PXRD, single-crystal crystallographic analysis, and FT-IR. The degradability of MOFs was measured in media such as deionized water or DPBS by PXRD, SEM, and ICP-MS. Furthermore, we investigated the anticancer activity of MOFs against the cell lines SKOV3, U87MG, and LN229, as well as their biocompatibility with normal fibroblast cells. The results show that a nanoporous 3D Cu-MOF could potentially be a promising candidate for chemoprevention and chemotherapy.

8.
Metabolites ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34940608

RESUMO

Diagnosing leptomeningeal metastasis (LM) in medulloblastoma is currently based on positive cerebrospinal fluid (CSF) cytology or magnetic resonance imaging (MRI) finding. However, the relevance of discordant results has not been established. We evaluated the diagnostic potential of CSF metabolomic profiles in the medulloblastoma LM assessment. A total of 83 CSF samples from medulloblastoma patients with documented MRI and CSF cytology results at the time of sampling for LM underwent low-mass ions (LMIs) analysis using liquid chromatography-mass spectrometry. Discriminating LMIs were selected by a summed sensitivity and specificity (>160%) and LMI discriminant equation (LOME) algorithms, evaluated by measuring diagnostic accuracy for verifying LM groups of different MRI/cytology results. Diagnostic accuracy of LM in medulloblastoma was 0.722 for cytology and 0.889 for MRI. Among 6572 LMIs identified in all sample, we identified 27 discriminative LMIs differentiating MRI (+)/cytology (+) from MRI (-)/cytology (-). Using LMI discriminant equation (LOME) analysis, we selected 9 LMIs with a sensitivity of 100% and a specificity of 93.6% for differentiating MRI (+)/cytology (+) from MRI (-)/cytology (-). Another LOME of 20 LMIs significantly differentiated sampling time relative to treatment (p = 0.007) and the presence or absence of LM-related symptoms (p = 0.03) in the MRI (+)/cytology (-) group. CSF metabolomics of medulloblastoma patients revealed significantly different profiles among LM diagnosed with different test results. We suggest that LM patients could be screened by appropriately selected LOME-generated LMIs to support LM diagnosis by either MRI or cytology alone.

9.
Cells ; 10(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685708

RESUMO

Pelvic organ prolapse (POP) is a chronic disorder that affects quality of life in women. Several POP treatments may be accompanied by abrasion, constant infection, and severe pain. Therefore, new treatment methods and improvements in current treatments for POP are required. Non-thermal atmospheric-pressure plasma is a rising biomedical therapy that generates a mixed cocktail of reactive species by different mechanisms. In this study, we applied a cylinder-type dielectric barrier discharge plasma device to create a plasma-treated liquid (PTL). The PTL was added to primary cultured human uterosacral ligament fibroblast (hUSLF) cells from POP patients at each stage. Surprisingly, treatment with diluted PTL increased hUSLF cell viability but decreased ovarian cancer cell viability. PTL also decreased cell apoptosis in hUSLF cells but increased it in SKOV3 cells. Our results suggest that PTL protects hUSLF cells from cell apoptosis by controlling the p53 pathway and improves cell viability, implying that PTL is a promising application for POP therapy.


Assuntos
Fibroblastos/patologia , Ligamentos/patologia , Prolapso de Órgão Pélvico/patologia , Gases em Plasma/farmacologia , Sacro/patologia , Útero/patologia , Idoso , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade
10.
Front Oncol ; 11: 648023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367950

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumor (AT/RT) is arising typically in young children and is associated with a dismal prognosis which there is currently no curative chemotherapeutic regimen. Based on previous studies showing high histone deacetylase 1 (HDAC1) expression in AT/RT, the HDAC1 inhibitor CI-994 was used as a novel treatment strategy in this study. We assessed the anticancer effects of CI-994 and conventional drugs (etoposide, cisplatin or 4-HC) in AT/RT cells. METHODS: AT/RT patient-derived primary cultured cells and cell lines were prepared. HDAC1 was estimated by real-time quantitative polymerase chain reaction (RT-qPCR). The interaction of the drugs was analyzed using isobologram analysis. Cell viability, apoptosis, HDAC enzyme activity and western blot assays were carried out. RESULTS: HDAC1 was overexpressed in AT/RT compared to medulloblastoma. The combination index (CI) of CI-994 with etoposide revealed a synergistic effect in all AT/RT cells, but no synergistic effect was observed between CI-994 and cisplatin or 4-HC. CI-994 effectively reduced not only Class I HDAC gene expression but also HDAC enzyme activity. The combination treatment of CI-994 with etoposide significantly increased apoptosis compared to the single treatment. The enhanced effect of apoptosis by this combination treatment is related to a signaling pathway which decreases topoisomerase (Topo) II and increases histone H3 acetylation (Ac-H3). CONCLUSION: We demonstrate that the combination treatment of CI-994 with etoposide exerts a synergistic anticancer effect against AT/RT by significantly inducing apoptosis through Topo II and Ac-H3 regulation. CLINICAL RELEVANCE: This combination treatment might be considered a viable therapeutic strategy for AT/RT patients.

11.
Cancer Cell Int ; 20(1): 558, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33292274

RESUMO

BACKGROUND: Extracellular vesicles (EVs) secreted by tumours, including exosomes, are important factors that regulate cell-cell interactions in oncogenesis. Although EV studies are ongoing, the biological understanding of EV-miRNAs derived from brain tumour spheroid-forming cells (BTSCs) of medulloblastoma is poor. PURPOSES: We explored the specific cellular miRNAs and EV-miRNAs in medulloblastoma BTSCs to determine their potential biological function. METHODS: Bulk tumor cells (BTCs) and BTSCs were cultured under different conditions from medulloblastoma tissues (N = 10). RESULTS: Twenty-four miRNAs were simultaneously increased in both cells and EVs derived from BTSCs in comparison to BTCs. After inhibition of miR-135b or miR135a which were the most significantly increased in BTSCs, cell viability, self-renewal and stem cell marker expression decreased remarkably. Through integrated analysis of mRNAs and miRNAs data, we found that angiomotin-like 2 (AMOTL2), which was significantly decreased, was targeted by both miR-135b and miR-135a. STAT6 and GPX8 were targeted only by miR-135a. Importantly, low expression of AMOTL2 was significantly associated with overall poor survival in paediatric Group 3 and Group 4 medulloblastoma patients. CONCLUSION: Our results indicated that inhibition of miR-135b or miR-135a leads to suppress stemness of BTSC through modulation of AMOTL2.

12.
Cancer Lett ; 486: 38-45, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32428661

RESUMO

Atypical teratoid/rhabdoid tumor (AT/RT) is the most malignant tumor of the central nervous system that generally occurs in young children. Despite the use of intensive multimodal therapy for AT/RT, the prognosis is still poor. The brain tumor initiating cells in AT/RT cells has been suggested as one of the challenges in AT/RT treatment. These cells have high expression of aldehyde dehydrogenase (ALDH). We investigated the combination effect of the ALDH inhibitor, disulfiram and cisplatin in the treatment of AT/RT cells. Isobologram analysis revealed that the combination therapy synergistically increases AT/RT cell death. The enzyme activity of ALDH AT/RT cells was effectively reduced by the combination therapy. We proposed that the synergistic augmentation occurs, at least partially through an increase in cleaved Poly (ADP-ribose) polymerase (PARP)-dependent apoptosis mediated by activating transcription factor 3 (ATF3). In the AT/RT mouse model, the combination therapy decreased tumor volume and prolonged survival. Immunofluorescence assay in mouse brain tissues were consistent with the expression of ATF3 and cleaved PARP. Our study demonstrates enhanced anti-cancer effect of combination therapy of disulfiram and cisplatin. This combination might provide a viable therapeutic strategy for AT/RT patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/farmacologia , Dissulfiram/farmacologia , Tumor Rabdoide/tratamento farmacológico , Teratoma/tratamento farmacológico , Fator 3 Ativador da Transcrição/fisiologia , Aldeído Desidrogenase/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Dissulfiram/administração & dosagem , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tumor Rabdoide/patologia , Teratoma/patologia
13.
Cancers (Basel) ; 12(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963881

RESUMO

Nonthermal plasma is a promising novel therapy for the alteration of biological and clinical functions of cells and tissues, including apoptosis and inhibition of tumor progression. This therapy generates reactive oxygen and nitrogen species (RONS), which play a major role in anticancer effects. Previous research has verified that plasma jets can selectively induce apoptosis in various cancer cells, suggesting that it could be a potentially effective novel therapy in combination with or as an alternative to conventional therapeutic methods. In this study, we determined the effects of nonthermal air soft plasma jets on a U87 MG brain cancer cell line, including the dose- and time-dependent effects and the physicochemical and biological correlation between the RONS cascade and p38/mitogen-activated protein kinase (MAPK) signaling pathway, which contribute to apoptosis. The results indicated that soft plasma jets efficiently inhibit cell proliferation and induce apoptosis in U87 MG cells but have minimal effects on astrocytes. These findings revealed that soft plasma jets produce a potent cytotoxic effect via the initiation of cell cycle arrest and apoptosis. The production of reactive oxygen species (ROS) in cells was tested, and an intracellular ROS scavenger, N-acetyl cysteine (NAC), was examined. Our results suggested that soft plasma jets could potentially be used as an effective approach for anticancer therapy.

14.
BMC Cancer ; 19(1): 848, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462227

RESUMO

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RTs) are highly malignant brain tumors with inactivation of the SMARCB1 gene, which play a critical role in genomic transcriptional control. In this study, we analyzed the genomic and transcriptomic profiles of human AT/RTs to discover new druggable targets. METHODS: Multiplanar sequencing analyses, including whole exome sequencing (WES), single nucleotide polymorphism (SNP) arrays, array comparative genomic hybridization (aCGH), and whole transcriptome sequencing (RNA-Seq), were performed on 4 AT/RT tissues. Validation of a druggable target was conducted using AT/RT cell lines. RESULTS: WES revealed that the AT/RT genome is extremely stable except for the inactivation of SMARCB1. However, we identified 897 significantly upregulated genes and 523 significantly downregulated genes identified using RNA-Seq, indicating that the transcriptional profiles of the AT/RT tissues changed substantially. Gene set enrichment assays revealed genes related to the canonical pathways of cancers, and nucleophosmin (NPM1) was the most significantly upregulated gene in the AT/RT samples. An NPM1 inhibitor (NSC348884) effectively suppressed the viability of 7 AT/RT cell lines. Network analyses showed that genes associated with NPM1 are mainly involved in cell cycle regulation. Upon treatment with an NPM1 inhibitor, cell cycle arrest at G1 phase was observed in AT/RT cells. CONCLUSIONS: We propose that NPM1 is a novel therapeutic target for AT/RTs.


Assuntos
Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Proteínas Nucleares/genética , Tumor Rabdoide/genética , Teratoma/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hibridização Genômica Comparativa , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Nucleofosmina , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Regulação para Cima
15.
BMC Cancer ; 19(1): 571, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185958

RESUMO

BACKGROUND: Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma. METHOD: Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad range copy number change data. RESULTS: In SHH subgroup, relatively high expression of the core genes involved in p53, PLK1, FOXM1, and Aurora B signaling pathways are associated with poor prognosis, and their average expression synergistically increases with co-occurrence of losses of 17p, 14q, or 10q, or gain of 17q. In Group 3, in addition to high MYC expression, relatively elevated expression of PDGFRA, IGF1R, and FGF2 and their downstream genes in PI3K/AKT and MAPK/ERK pathways are related to poor survival outcome, and their average expression is increased with the presence of isochromosome 17q [i(17q)] and synergistically down-regulated with simultaneous losses of 16p, 8q, or 4q. In Group 4, up-regulation of the genes encoding various immune receptors and those involved in NOTCH, NF-κB, PI3K/AKT, or RHOA signaling pathways are associated with worse prognosis. Additionally, the expressions of Notch genes correlate with those of the prognostic immune receptors. Besides the Group 4 patients with previously known prognostic aberration, loss of chromosome 11, those with loss of 8q but without i(17q) show excellent survival outcomes and low average expression of the prognostic core genes whereas those harboring 10q loss, 1q gain, or 12q gain accompanied by i(17q) show bad outcomes. Finally, several metabolic pathways known to be reprogrammed in cancer cells are detected as prognostic pathways including glutamate metabolism in SHH subgroup, pentose phosphate pathway and TCA cycle in Group 3, and folate-mediated one carbon-metabolism in Group 4. CONCLUSIONS: The results underscore several subgroup-specific pathways for potential therapeutic interventions: SHH-GLI-FOXM1 pathway in SHH subgroup, receptor tyrosine kinases and their downstream pathways in Group 3, and immune and inflammatory pathways in Group 4.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Redes e Vias Metabólicas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/diagnóstico , Criança , Saúde da Criança , Pré-Escolar , Feminino , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inflamação/metabolismo , Estimativa de Kaplan-Meier , Masculino , Meduloblastoma/diagnóstico , Prognóstico , Modelos de Riscos Proporcionais , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Clin Exp Allergy ; 49(8): 1139-1149, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980570

RESUMO

BACKGROUND: Olfactory dysfunction is frequently experienced by patients with allergic rhinitis. It is thought to result from structural and functional changes occurring in the olfactory mucosa caused by inflammation. However, the current understanding of the pathophysiology of olfactory dysfunction in allergic rhinitis remains unclear. OBJECTIVE: To investigate the mechanism by which the olfactory neural cells are damaged in allergic rhinitis. METHODS: Olfactory sphere cells (OSCs) were established after dissociation and serial cultures of cells from the mouse olfactory mucosa. Viability and proliferation of OSCs were compared between control and allergic rhinitis mice models, and olfactory stem cell markers were analysed in vivo. To elucidate which cytokines have an inhibitory effect on OSCs, viability and apoptotic markers of OSCs were investigated. RESULTS: Olfactory sphere cells were successfully isolated from the olfactory mucosa of mice, and these cells expressed markers of neural stem cells. To investigate the neural differentiation, we performed the immunocytochemical staining and found significantly elevated expressions of Tuji1, GFAP and O4 on OSCs. On the comparison of the characteristics of OSCs between control and allergic rhinitis model, we detected significantly fewer neurospheres, reduced clonogenic capacity and decreased expression of olfactory neural stem cell markers in allergic rhinitis model. When OSCs were treated with several major allergic cytokines were treated on OSCs, only TNF-α showed an inhibitory effect on OSCs. Interestingly, IL-5 had an inhibitory effect on the viability of OSCs in combination with TNF-α, whereas IL-5 alone does not have an effect. Moreover, TNF-α combined with IL-5 significantly increased the apoptotic expression, compared with TNF-α or IL-5 alone. Additionally, allergic rhinitis mice models showed the increased apoptotic expression. CONCLUSION AND CLINICAL RELEVANCE: Allergic rhinitis mice models showed lower expression of OSCs, and TNF-α combined with IL-5 had an apoptotic effect on OSCs. Therefore, these cytokines may be therapeutic targets for olfactory dysfunction in patients with allergic rhinitis.


Assuntos
Apoptose/imunologia , Interleucina-5/imunologia , Mucosa Olfatória/fisiologia , Regeneração/imunologia , Rinite Alérgica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Rinite Alérgica/patologia
17.
Cancer Lett ; 442: 161-169, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367915

RESUMO

Human adipose tissue-derived mesenchymal stem cells expressing the secreted form of the tumor necrosis factor-related apoptosis-inducing ligand (hAT-MSC.sTRAIL) have demonstrated therapeutic activity against various tumors in preclinical studies. However, the limited expression of TRAIL death receptors remains a challenge. We evaluated the therapeutic efficacy of panobinostat in enhancing the sensitivity of hAT-MSC.sTRAIL-mediated apoptosis in malignant glioma. Panobinostat effectively inhibited all malignant glioma cells (IC50, 0.03-0.23 µM), enhancing the expression of DRs, but not in hAT-MSCs. Combined treatment with hAT-MSC.sTRAIL and panobinostat significantly suppressed cell viability and enhanced apoptosis. In a diffuse intrinsic pontine glioma (DIPG) mouse model, the combined treatment induced decreases in tumor volume and prolonged survival. Our study demonstrates that panobinostat enhances the expression of TRAIL DRs and potentiates the anti-cancer effects of hAT-MSC.sTRAIL.


Assuntos
Tecido Adiposo/citologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Terapia Genética/métodos , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Panobinostat/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Técnicas de Cocultura , Feminino , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMC Cancer ; 18(1): 535, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739450

RESUMO

BACKGROUND: Recent progress in molecular analysis has advanced the understanding of medulloblastoma (MB) and is anticipated to facilitate management of the disease. MB is composed of 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Macrophages play a crucial role in the tumor microenvironment; however, the functional role of their activated phenotype (M1/M2) remains controversial. Herein, we investigate the correlation between tumor-associated macrophage (TAM) recruitment within the MB subgroups and prognosis. METHODS: Molecular subgrouping was performed by a nanoString-based RNA assay on retrieved snap-frozen tissue samples. Immunohistochemistry (IHC) and immunofluorescence (IF) assays were performed on subgroup identified samples, and the number of polarized macrophages was quantified from IHC. Survival analyses were conducted on collected clinical data and quantified macrophage data. RESULTS: TAM (M1/M2) recruitment in SHH MB was significantly higher compared to that in other subgroups. A Kaplan-Meier survival curve and multivariate Cox regression demonstrated that high M1 expressers showed worse overall survival (OS) and progression-free survival (PFS) than low M1 expressers in SHH MB, with relative risk (RR) values of 11.918 and 6.022, respectively. CONCLUSION: M1 rather than M2 correlates more strongly with worse outcome in SHH medulloblastoma.


Assuntos
Neoplasias Cerebelares/imunologia , Proteínas Hedgehog/metabolismo , Macrófagos/imunologia , Meduloblastoma/imunologia , Microambiente Tumoral/imunologia , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Prognóstico , Intervalo Livre de Progressão , Análise de Sobrevida , Proteínas Wnt/metabolismo
19.
Acta Neuropathol ; 135(6): 939-953, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29644394

RESUMO

Despite great advances in understanding of molecular pathogenesis and achievement of a high cure rate in medulloblastoma, recurrent medulloblastomas are still dismal. Additionally, misidentification of secondary malignancies due to histological ambiguity leads to misdiagnosis and eventually to inappropriate treatment. Nevertheless, the genomic characteristics of recurrent medulloblastomas are poorly understood, largely due to a lack of matched primary and recurrent tumor tissues. We performed a genomic analysis of recurrent tumors from 17 pediatric medulloblastoma patients. Whole transcriptome sequencing revealed that a subset of recurrent tumors initially diagnosed as locally recurrent medulloblastomas are secondary glioblastomas after radiotherapy, showing high similarity to the non-G-CIMP proneural subtype of glioblastoma. Further analysis, including whole exome sequencing, revealed missense mutations or complex gene fusion events in PDGFRA with augmented expression in the secondary glioblastomas after radiotherapy, implicating PDGFRA as a putative driver in the development of secondary glioblastomas after treatment exposure. This result provides insight into the possible application of PDGFRA-targeted therapy in these second malignancies. Furthermore, genomic alterations of TP53 including 17p loss or germline/somatic mutations were also found in most of the secondary glioblastomas after radiotherapy, indicating a crucial role of TP53 alteration in the process. On the other hand, analysis of recurrent medulloblastomas revealed that the most prevalent alterations are the loss of 17p region including TP53 and gain of 7q region containing EZH2 which already exist in primary tumors. The 7q gain events are frequently accompanied by high expression levels of EZH2 in both primary and recurrent medulloblastomas, which provides a clue to a new therapeutic target to prevent recurrence. Considering the fact that it is often challenging to differentiate between recurrent medulloblastomas and secondary glioblastomas after radiotherapy, our findings have major clinical implications both for correct diagnosis and for potential therapeutic interventions in these devastating diseases.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioblastoma/genética , Meduloblastoma/radioterapia , Recidiva Local de Neoplasia/genética , Segunda Neoplasia Primária/genética , Adolescente , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Fusão Gênica , Glioblastoma/diagnóstico , Humanos , Lactente , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Mutação de Sentido Incorreto , Recidiva Local de Neoplasia/diagnóstico , Segunda Neoplasia Primária/diagnóstico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
20.
J Neurosurg ; 129(5): 1151-1159, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29219755

RESUMO

The authors performed morphological and functional studies of the mitochondria in particular blood cells, i.e., endothelial colony-forming cells (ECFCs), from patients with moyamoya disease. The results indicated that the mitochondria of these ECFCs exhibit morphological and functional abnormalities, which may present new insights into the pathogenesis of moyamoya disease.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Mitocôndrias/metabolismo , Doença de Moyamoya/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Lactente , Masculino , Mitocôndrias/patologia , Doença de Moyamoya/patologia , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA