Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 946929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248815

RESUMO

Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , MicroRNAs , Mycobacterium tuberculosis , Proteína de Transporte de Acila , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Ácidos Micólicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Medicina (Kaunas) ; 57(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918633

RESUMO

Klippel-Trénaunay Syndrome (KTS) is a genetic vascular malformation involving the capillary, lymphatic, and venous channels. Prenatal sonographic diagnosis of KTS with an enlarged fetal limb is well-known; however, postnatal gynecologic manifestations are rarely reported. KTS can cause clitoromegaly, vulvovaginal hemangioma, and heavy menstrual bleeding. Somatic mosaicism of the PIK3CA gene is considered as responsible for KTS but reports based on whole-genome sequencing are limited. A 31-year-old woman with KTS presented with bulging of the clitoris and vagina. Analysis of whole-genome sequencing variant data revealed that gene ontology terms related to development and differentiation such as 'skeletal system morphogenesis', 'embryonic morphogenesis', and 'sensory organ development' were nominally significant in non-coding regions. Variants in non-coding genes may be responsible for this phenotype.


Assuntos
Hemangioma , Síndrome de Klippel-Trenaunay-Weber , Menorragia , Prolapso de Órgão Pélvico , Adulto , Clitóris/diagnóstico por imagem , Feminino , Humanos , Síndrome de Klippel-Trenaunay-Weber/complicações , Síndrome de Klippel-Trenaunay-Weber/diagnóstico , Síndrome de Klippel-Trenaunay-Weber/genética , Gravidez
3.
Microbiol Immunol ; 65(4): 178-188, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33565648

RESUMO

Mycobacterium tuberculosis contains diverse immunologically active components. This study investigated the biological function of a newly identified component, Rv1654, with the potential to induce apoptosis in macrophages. Recombinant Rv1654 induced macrophage apoptosis in a caspase-9/3-dependent manner through the production of reactive oxygen species (ROS) and interaction with Toll-like receptor 4. In addition, Rv1654 induced the production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 through the mitogen-activated protein kinase pathway. Furthermore, Rv1654-induced c-Jun N-terminal kinase (JNK) activation was inhibited by the ROS scavenger and Rv1654-induced apoptosis was inhibited by the JNK inhibitor. Moreover, it was found that treatment of macrophages with Rv1654 led to the loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and translocation of Bax into the mitochondria. Finally, Rv1654-mediated apoptosis was inhibited in macrophages transfected with Bax siRNA. These results suggest that Rv1654 induces macrophage apoptosis through a mitochondrial-dependent pathway and ROS-mediated JNK activation.


Assuntos
Apoptose , Proteínas de Bactérias/imunologia , Macrófagos/microbiologia , Mitocôndrias , Mycobacterium tuberculosis , Caspases , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/imunologia , Receptores Toll-Like
4.
Cell Immunol ; 354: 104145, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569876

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen known to persist in host cells. The apoptotic response of macrophages serves as a defense mechanism to inhibit the growth of intracellular bacteria, the failure of which can favor the spread of the pathogen to new cells. However, the mycobacterial components that regulate cell death and the related underlying mechanisms remain poorly understood. In this study, we investigated protein Rv3261, isolated from an Mtb culture filtrate, for its apoptotic potential using multidimensional fractionation. Rv3261 was found to induce macrophage apoptosis through the caspase-3/-9-dependent pathway. Furthermore, the ROS-dependent JNK activation pathway was found to be critical in Rv3261-mediated apoptosis. Rv3261 inhibited the growth of intracellular Mtb, which was significantly abrogated by pre-treatment with the ROS scavenger N-acetylcysteine (NAC), suggesting that Rv3261-mediated apoptosis may act as a host defense response. These findings suggest that Rv3261 is involved in the apoptotic modulation of Mtb-infected macrophages.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/fisiologia , Acetilcisteína/farmacologia , Animais , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Processos de Crescimento Celular , Evasão da Resposta Imune , Imunidade Inata , Espaço Intracelular , MAP Quinase Quinase 4/metabolismo , Macrófagos/imunologia , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Sci Rep ; 9(1): 4246, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862819

RESUMO

Macrophages are responsible for innate and adaptive immune response activation necessary for eliminating infections. Optimal activation of macrophages to phagocytize Mycobacterium tuberculosis is critical in anti-mycobacterial defense. Here, we identified a novel Rv3463 hypothetical protein that induces macrophage activation in Mtb culture filtrate. Recombinant Rv3463 activated mouse bone marrow-derived macrophages to induce the expression of surface molecules and secrete pro-inflammatory cytokines via the TLR2 and TLR4 pathways. Mitogen activated protein kinase, phospatidylinositol-4,5-bisphosphate 3-kinases, and the NF-κB signaling pathways are involved in Rv3463-mediated macrophage activation. Furthermore, Rv3463 induced bactericidal effects in Mtb-infected macrophages through phagosome maturation and phagolysosomal fusion enhanced by phospatidylinositol-4,5-bisphosphate 3-kinases and Ca2+ signaling pathways and exhibited therapeutic effects in a short-term Mtb-infection mouse model. Overexpression of Rv3463 in M. smegmatis caused rapid clearance of bacteria in macrophages and mice. Our study suggests that Rv3463 is a promising target for the development of post-exposure tuberculosis vaccines or adjunct immune-therapy.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lisossomos/imunologia , Lisossomos/microbiologia , Ativação de Macrófagos , Macrófagos/microbiologia , Camundongos , Fagocitose/imunologia , Profilaxia Pós-Exposição/métodos , Transdução de Sinais/imunologia , Células THP-1 , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
6.
Microbes Infect ; 21(1): 40-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29981934

RESUMO

Mycobacterial acyl carrier protein (AcpM; Rv2244) is a meromycolate extension acyl carrier protein of Mycobacterium tuberculosis (Mtb), which participates in multistep mycolic acid biosynthesis. However, the function of AcpM in host-mycobacterium interactions during infection remains largely uncharacterized. Here we show that AcpM inhibits host cell apoptosis during mycobacterial infection. To examine the function of AcpM during infection, we generated a recombinant Mycobacterium smegmatis (M. smegmatis) strain overexpressing AcpM (Ms_AcpM) and a strain transformed with an empty vector (Ms_Vec). Ms_AcpM promoted intracellular survival of M. smegmatis and led to a significant decrease in the death rate of primary bone marrow-derived macrophages (BMDMs). Importantly, Ms_AcpM showed significantly decreased reactive oxygen species (ROS) generation and activation of c-Jun N-terminal kinase (JNK) signaling compared with Ms_Vec. In addition, treatment of BMDMs with recombinant AcpM significantly inhibited the apoptosis and ROS/JNK signaling induced by M. smegmatis. Moreover, recombinant AcpM enhanced intracellular survival of Mtb H37Rv. Taken together, these results indicate that AcpM plays a role as a virulence factor by modulating host cell apoptosis during mycobacterial infection.


Assuntos
Apoptose/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/patologia , Mycobacterium tuberculosis/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Células Cultivadas , Feminino , Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Exp Mol Med ; 49(11): e400, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170473

RESUMO

B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220+ cell population from Lineage- (Lin-) Sca-1+ c-Kit+ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220+ IgM+ cell populations (6.7±0.6-13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5-6.4±0.6%) and OP9 cells (1.8±0.6-3.9±0.5%). In addition, the production of B220+ IgM+ IgD+ cell populations was significantly enhanced by OBN4 cells (15.4±1.1-18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6-14.6±1.6%) and OP9 cells (9.1±0.5-10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin- Sca-1+ c-Kit+ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Linfopoese , Animais , Biomarcadores , Linhagem Celular , Separação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Nicho de Células-Tronco
8.
PLoS One ; 11(10): e0164458, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711141

RESUMO

Macrophages constitute the first line of defense against Mycobacterium tuberculosis and are critical in linking innate and adaptive immunity. Therefore, the identification and characterization of mycobacterial proteins that modulate macrophage function are essential for understanding tuberculosis pathogenesis. In this study, we identified the novel macrophage-activating protein, Rv2882c, from M. tuberculosis culture filtrate proteins. Recombinant Rv2882c protein activated macrophages to secrete pro-inflammatory cytokines and express co-stimulatory and major histocompatibility complex molecules via Toll-like receptor 4, myeloid differentiation primary response protein 88, and Toll/IL-1 receptor-domain-containing adaptor inducing IFN-beta. Mitogen-activated protein kinases and NF-κB signaling pathways were involved in Rv2882c-induced macrophage activation. Further, Rv2882c-treated macrophages induced expansion of the effector/memory T cell population and Th1 immune responses. In addition, boosting Bacillus Calmette-Guerin vaccination with Rv2882c improved protective efficacy against M. tuberculosis in our model system. These results suggest that Rv2882c is an antigen that could be used for tuberculosis vaccine development.


Assuntos
Proteínas de Bactérias/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/metabolismo , Receptor 4 Toll-Like/metabolismo , Vacinas contra a Tuberculose/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/análise , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais , Baço/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
9.
J Biol Chem ; 291(39): 20643-60, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27507811

RESUMO

The signaling pathway downstream of stimulation of receptor activator of nuclear factor κB (RANK) by RANK ligand is crucial for osteoclastogenesis. RANK recruits TNF receptor-associated factor 6 (TRAF6) to TRAF6-binding sites (T6BSs) in the RANK cytoplasmic tail (RANKcyto) to trigger downstream osteoclastogenic signaling cascades. RANKcyto harbors an additional highly conserved domain (HCR) that also activates crucial signaling during RANK-mediated osteoclastogenesis. However, the functional cross-talk between T6BSs and the HCR in the RANK signaling complex remains unclear. To characterize the cross-talk between T6BSs and the HCR, we screened TRAF6-interacting proteins using a proteomics approach. We identified Vav3 as a novel TRAF6 binding partner and evaluated the functional importance of the TRAF6-Vav3 interaction in the RANK signaling complex. We demonstrated that the coiled-coil domain of TRAF6 interacts directly with the Dbl homology domain of Vav3 to form the RANK signaling complex independent of the TRAF6 ubiquitination pathway. TRAF6 is recruited to the RANKcyto mutant, which lacks T6BSs, via the Vav3 interaction; conversely, Vav3 is recruited to the RANKcyto mutant, which lacks the IVVY motif, via the TRAF6 interaction. Finally, we determined that the TRAF6-Vav3 interaction resulting from cross-talk between T6BSs and the IVVY motif in RANKcyto enhances downstream NF-κB, MAPK, and NFATc1 activation by further strengthening TRAF6 signaling, thereby inducing RANK-mediated osteoclastogenesis. Thus, Vav3 is a novel TRAF6 interaction partner that functions in the activation of cooperative signaling between T6BSs and the IVVY motif in the RANK signaling complex.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Complexos Multiproteicos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/genética , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-vav/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação/fisiologia
10.
Apoptosis ; 21(4): 459-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842846

RESUMO

Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.


Assuntos
Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Citocromos c/metabolismo , Feminino , Interleucina-6/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium avium/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
J Biol Chem ; 290(15): 9660-73, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25716317

RESUMO

The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Fator 2 Associado a Receptor de TNF/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação/genética , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
12.
J Clin Immunol ; 32(6): 1360-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22711011

RESUMO

PURPOSE: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation. METHODS: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1). RESULTS: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1. CONCLUSIONS: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Inositol/farmacologia , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Ligante RANK/genética , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Linhagem Celular , Relação Dose-Resposta a Droga , Células Gigantes/patologia , Humanos , Inositol/análogos & derivados , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Estereoisomerismo
13.
Biochem Biophys Res Commun ; 363(4): 971-7, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17927961

RESUMO

Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are key adaptor molecules in the TNFR-signaling complexes that promote a wide variety of signaling cascades including cell proliferation, activation, differentiation, and apoptosis. TRAF-interacting protein (TRIP) is required for the inhibitory regulation of TNF-induced NF-kappaB signaling via the TNFR/TRAF-signaling complexes in vitro. TRIP also directly interacts with the familial cylindromatosis tumor suppressor gene (CYLD) and negatively regulates NF-kappaB activation in vitro. However, although there appears to be a relationship between TRIP, the TRAFs and also CYLD as modulators of NF-kappaB signaling in vitro, the functional role of TRIP in vivo is still unclear. To identify the role of TRIP in vivo, we have generated TRIP-deficient mice. Homozygous mouse embryos were found to die shortly after implantation due to proliferation defects and excessive cell death. These results indicate that TRIP is an essential factor during early mouse embryonic development in vivo.


Assuntos
Perda do Embrião/metabolismo , Deleção de Genes , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/deficiência , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Proliferação de Células , Regulação para Baixo/efeitos dos fármacos , Perda do Embrião/genética , Perda do Embrião/patologia , Feminino , Genótipo , Camundongos , Camundongos Knockout , Células NIH 3T3 , Gravidez , RNA Interferente Pequeno/genética , Fatores de Tempo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA