Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256941

RESUMO

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

2.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824277

RESUMO

In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and ß-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.


Assuntos
Envelhecimento/metabolismo , Fígado Gorduroso/terapia , Hiperlipidemias/terapia , Probióticos/uso terapêutico , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento/patologia , Animais , Anticolesterolemiantes/farmacologia , Lactobacillus/patogenicidade , Metabolismo dos Lipídeos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Probióticos/administração & dosagem , Proteínas Quinases/genética , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Regulação para Cima
3.
Appl Biochem Biotechnol ; 191(1): 226-244, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32125649

RESUMO

This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alantoína/farmacologia , Colesterol/biossíntese , Lactobacillus plantarum , Limosilactobacillus reuteri , Ácido Mevalônico/metabolismo , Probióticos/farmacologia , Animais , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
Probiotics Antimicrob Proteins ; 12(2): 545-562, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31301059

RESUMO

Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by D-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague-Dawley rats were fed with high-fat diet and injected with D-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.


Assuntos
Envelhecimento , Fezes/microbiologia , Microbioma Gastrointestinal , Lactobacillus , Probióticos/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 14(1): e0210869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677071

RESUMO

Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 µM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 µM and 16 µM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Domínio Catalítico , Chalconas/química , Chalconas/farmacologia , Vírus da Dengue/classificação , Vírus da Dengue/enzimologia , Estabilidade de Medicamentos , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/síntese química , Serina Endopeptidases/efeitos dos fármacos , Tioguanina/química , Interface Usuário-Computador , Proteínas não Estruturais Virais/antagonistas & inibidores
6.
J Med Food ; 22(1): 1-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30592688

RESUMO

Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P < .05). Using premature senescent Sprague-Dawley rats induced by D-galactose (D-gal), the administration of LAB (10 log CFU/rat/day) for 12 weeks prevented the shortening of telomere length in D-gal-treated rats compared to the untreated control (P < .05). LF-DR9 lowered gene expression of p53, a known senescent biomarker, in gastrocnemius muscle and tibia compared to the control. The selected LAB strains also enhanced lipid, renal, and liver profile of rats, suggesting added potential of the strains in preventing aging-induced metabolic diseases. Strain LP-0291 and LH-1515 showed ability to adhere to mucin, no antibiotic resistance, tolerated and proliferated under gastric and intestinal simulated conditions, and inhibited the growth of pathogens Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis, comparable to commercial probiotic LF-DR9 and Lactobacillus sakei Probio 65. This study provided an insight into the potential of LAB for exhibiting antisenescence effects, with potentials as new medicinal foods for targeted antiaging therapies.


Assuntos
Envelhecimento/fisiologia , Lactobacillus , Doenças Metabólicas/prevenção & controle , Probióticos/uso terapêutico , Encurtamento do Telômero , Proteínas Quinases Ativadas por AMP/metabolismo , Alcadienos/metabolismo , Animais , Células CACO-2 , Galactose , Humanos , Rim/metabolismo , Limosilactobacillus fermentum , Lactobacillus helveticus , Lacticaseibacillus paracasei , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Doenças Metabólicas/etiologia , Camundongos , Músculo Esquelético/metabolismo , Polímeros/metabolismo , Ratos Sprague-Dawley
7.
Interdiscip Sci ; 8(4): 374-387, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297309

RESUMO

Heat shock proteins (Hsps) 60 and 70 are postulated as a potential drug target for toxoplasmosis due to its importance in the developmental and survival of Toxoplasma gondii (T. gondii). As of today, there have been no reports on three-dimensional (3D) structure of Hsp60 and Hsp70 deposited in the Brookhaven Protein Data Bank. Hence, this study was conducted to predict 3D structures for Hsp60 and Hsp70 in T. gondii by homology modeling. Selection of the best predicted model was done based on multiple scoring functions. In addition, virtual screening was performed to short-list chemical compounds from the National Cancer Institute (NCI) Diversity Set III in search of potential inhibitor against Hsp60 and Hsp70 in T. gondii. Prior to virtual screening, binding sites of Hsp60 and Hsp70 were predicted using various servers and were used as the center in docking studies. The Hsps were docked against known natural ligands to validate the method used in estimating free energy of binding (FEB) and possible interactions between ligand and protein. Virtual screening was performed with a total of 1560 compounds from the NCI Diversity Set III. The compounds were ranked subsequently according to their FEB. Molecular basis of interactions of the top five ranked compounds was investigated using Ligplot+. The major interactions exhibited were hydrogen bonding and hydrophobic interactions in binding to Hsp60 and Hsp70. The results obtained provided information and guidelines for the development of inhibitors for Hsp60 and Hsp70 in T. gondii.


Assuntos
Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Simulação de Acoplamento Molecular , Toxoplasma/efeitos dos fármacos
8.
J Mol Graph Model ; 60: 24-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26086900

RESUMO

The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of <-10 kcal mol(-1). Besides, the P(3), P(1)', P(2)' and P(4)' subsites showed a less contribution in binding interaction (<-2 kcal mol(-1)). The catalytic water was detected nearby the carbonyl oxygen of the P(1) reacting center of the capsid, intNS3, 2A/2B and 4B/5 peptides. These results led to the order of absolute binding free energy (ΔGbind) between these substrates and the NS2B/NS3 protease ranked as capsid>intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.


Assuntos
Vírus da Dengue/enzimologia , Simulação de Dinâmica Molecular , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/metabolismo , Catálise , Domínio Catalítico , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/química , Especificidade por Substrato , Termodinâmica , Proteínas não Estruturais Virais/química
9.
Crit Rev Biotechnol ; 35(3): 392-401, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24575869

RESUMO

Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.


Assuntos
Amidoidrolases , Colesterol , Probióticos , Animais , Colesterol/sangue , Colesterol/metabolismo , Humanos , Camundongos , Microbiota
10.
Int J Mol Sci ; 15(5): 7225-49, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24776765

RESUMO

Fevicordin-A (FevA) isolated from Phaleria macrocarpa (Scheff) Boerl. seeds was evaluated for its potential anticancer activity by in vitro and in silico approaches. Cytotoxicity studies indicated that FevA was selective against cell lines of human breast adenocarcinoma (MCF-7) with an IC50 value of 6.4 µM. At 11.2 µM, FevA resulted in 76.8% cell death of T-47D human breast cancer cell lines. Critical pharmacophore features amongst human Estrogen Receptor-α (hERα) antagonists were conserved in FevA with regard to a hypothesis that they could make notable contributions to its pharmacological activity. The binding stability as well as the dynamic behavior of FevA towards the hERα receptor in agonist and antagonist binding sites were probed using molecular dynamics (MD) simulation approach. Analysis of MD simulation suggested that the tail of FevA was accountable for the repulsion of the C-terminal of Helix-11 (H11) in both agonist and antagonist receptor forms. The flexibility of loop-534 indicated the ability to disrupt the hydrogen bond zipper network between H3 and H11 in hERα. In addition, MM/GBSA calculation from the molecular dynamic simulations also revealed a stronger binding affinity of FevA in antagonistic action as compared to that of agonistic action. Collectively, both the experimental and computational results indicated that FevA has potential as a candidate for an anticancer agent, which is worth promoting for further preclinical evaluation.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cucurbitacinas/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Thymelaeaceae/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cucurbitacinas/química , Cucurbitacinas/isolamento & purificação , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/isolamento & purificação , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sementes/química , Termodinâmica
11.
J Ethnopharmacol ; 149(1): 201-7, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23810842

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia Jack (Simaroubaceae family), known locally as 'Tongkat Ali' by the ethnic population, is popularly taken as a traditional remedy to improve the male libido, sexual prowess and fertility. Presently, many tea, coffee and carbonated beverages, pre-mixed with the root extract are available commercially for the improvement of general health and labido. Eurycomanone, the highest concentrated quassinoid in the root extract of E. longifolia improved fertility by increasing testosterone and spermatogenesis of rats through the hypothalamus-pituitary-gonadal axis, but the mechanisms underlying the effects are not totally clear. AIM OF THE STUDY: To provide evidences on the plant ethnopharmacological use and the involvement of eurycomanone, the major indigenous plant quassinoid in testosterone steroidogenesis and spermatogenesis increase. MATERIAL AND METHODS: The rat testicular Leydig cell-rich interstitial cells were isolated and incubated in the culture medium M199. The viability of the cells was determined with trypan blue staining and the concentration of the viable cells was counted with a haemocytometer. The 3ß-hydroxysteroid dehydrogenase (HSD) staining method was used to measure the abundance of Leydig cells in the preparation. Eurycomanone and the standard steroidogenesis inhibitors were incubated with 1.0 × 10(5) cells, and after 2h, the testosterone and the oestrogen concentrations were determined by the ELISA method. Computational molecular docking was performed to determine the binding affinity of the compound at the respective steroidogenesis enzymes. RESULTS: Eurycomanone (EN) significantly increased testosterone production dose-dependently at 0.1, 1.0 and 10.0 µM (P<0.05), but the two lower doses when combined with 3-isobutyl-1-methylxanthine (IBMX), the phosphodiesterase inhibitor were not significantly higher than EN or IBMX alone, except at a higher concentration. The molecular docking studies indicated EN and IBMX were binding at different sites of the enzyme. EN has no reversal of inhibition by aminoglutethimide, ketoconazole or nifedipine at the respective steroidogenesis enzyme. The quassinoid was also non-responsive to the inhibition of oestrogen receptor by tamoxifen, but displayed improved formestane inhibition of aromatase in reducing oestrogen production. The molecular docking studies further supported that EN and formestane bound to aromatase with similar orientations and free energy binding values. CONCLUSION: Eurycomanone enhanced testosterone steroidogenesis at the Leydig cells by inhibiting aromatase conversion of testosterone to oestrogen, and at a high concentration may also involve phosphodiesterase inhibition. The quassinoid may be worthy for further development as a phytomedicine to treat testosterone-deficient idiopathic male infertility and sterility.


Assuntos
Inibidores da Aromatase/farmacologia , Eurycoma/química , Inibidores de Fosfodiesterase/farmacologia , Extratos Vegetais/farmacologia , Quassinas/farmacologia , Espermatogênese/efeitos dos fármacos , Testosterona/biossíntese , Animais , Aromatase/metabolismo , Inibidores da Aromatase/isolamento & purificação , Células Cultivadas , Etnofarmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/enzimologia , Células Intersticiais do Testículo/metabolismo , Masculino , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/isolamento & purificação , Diester Fosfórico Hidrolases/metabolismo , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Ligação Proteica , Quassinas/isolamento & purificação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA