Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(17): 15258-15269, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29630334

RESUMO

Roughness contrast patterns were generated on copper surfaces by a simple one-step site-selective oxidation process using a felt-tipped ink pen masking method. The patterned surface exhibited strong underwater oil wettability contrast which allows oil droplet confinement. Oil droplets placed on two patterned smooth dots (reservoirs) connected by a patterned smooth channel will spontaneously exchange liquid as a result of Laplace pressure differences until their shapes have reached equilibrium. In our experiments, residual solubility of the oil in water was overcome by using saturated oil-in-water solutions as the aqueous medium. In the saturated solution, the dependence of pattern geometry and oil viscosity on transported volume and the flow rate in the underwater oil transport process was investigated for dichloromethane and hexadecane. Experimental results were in good agreement with a simple model for Laplace pressure-driven flow. Depending on droplet curvatures, oil can be transported from large to small reservoirs or vice versa. The model predictions enable the design of reservoir and channel dimensions to control liquid transport in the water-solid surface-oil system. The patterning technique was extended to more complex patterns with multiple reservoirs for smart oil separation and mixing processes. The concepts demonstrated in this study can be employed to seed droplet arrays with specific initial drop volumes and achieve subsequent droplet mixing at controlled flow rates for potential lab-on-a-chip applications ranging from oil-droplet-based miniature reactors and sensors to high-throughput assays.

2.
ACS Biomater Sci Eng ; 4(1): 90-97, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29333490

RESUMO

Bacterial adhesion to stainless steel 316L (SS316L), which is an alloy typically used in many medical devices and food processing equipment, can cause serious infections along with substantial healthcare costs. This work demonstrates that nanotextured SS316L surfaces produced by electrochemical etching effectively inhibit bacterial adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, but exhibit cytocompatibility and no toxicity toward mammalian cells in vitro. Additionally, the electrochemical surface modification on SS316L results in formation of superior passive layer at the surface, improving corrosion resistance. The nanotextured SS316L offers significant potential for medical applications based on the surface structure-induced reduction of bacterial adhesion without use of antibiotic or chemical modifications while providing cytocompatibility and corrosion resistance in physiological conditions.

3.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28748658

RESUMO

Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.


Assuntos
Elastina/química , Peptídeos/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Elastina/ultraestrutura , Proteínas de Membrana/química , Nefelometria e Turbidimetria , Difração de Nêutrons , Transição de Fase , Proteínas Recombinantes de Fusão/ultraestrutura , Espalhamento a Baixo Ângulo , Tensoativos/química , Temperatura
4.
Indian J Orthop ; 41(4): 346-53, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21139790

RESUMO

BACKGROUND: Controversy continues regarding the best treatment for compression and burst fractures. The axial distraction reduction utilizing the technique employing the long straight rod or curved short rod without derotation to reduce fracture are practised together with short segment posterolateral fusion (PLF). Effects of the early postoperative mobilization without posterolateral fusion on reduction maintenance and fracture consolidation were not evaluated so far. The present prospective study is designed to assess the effectiveness of i) reduction and restoration of sagittal alignment, ii) no posterolateral fusion on the reduced, fractured vertebral body and injured disc, iii) fracture consolidation and iv) the fate of the unfused cephalad and caudal injured motion segments of the fractured vertebra. MATERIALS AND METHODS: The study includes 15 Denis burst and two Denis type D compression fractures between T(12) and L(3). The lordotic distraction technique was used for ligamentotaxis utilizing the contoured short rods and pedicle screw fixator. Three vertebrae including the fractured one were fixed. The patients after surgery were braced for ten weeks with activity restriction for 2-4 weeks. The patients were evaluated for change in vertebral body height, sagittal curve, reduction of retropulsion, improvement in neural deficit. The unfused motion segments, residual postoperative pain and bone and metal failure were also evaluated. RESULTS: The preoperative and postreduction percentile vertebral heights at, zero (immediate postoperative), at three, six and 12 months followup were 62.4, 94.8, 94.6, 94.5 and 94.5%, respectively. The percentages of the intracanal fragment retropulsion at preoperative, and postoperative at zero, 3, 6 and 12 months followup were 59.0, 36.2,, 36.0, 32.3, and 13.6% respectively. The preoperative and postreduction percentile loss of the canal dimension and at zero, three, six and 12 months were 52.1, 45.0, 44.0, 41.0 and 29% respectively suggesting that the under-reduced fragment was being resorbed gradually by a remodeling process. The mean initial kyphosis of 33° became mean 2° immediately after reduction and mean 3° at the final followup. The fractured vertebral bodies consolidated in an average period of ten weeks (range 8-14 weeks). The restored disc heights were relatively well maintained throughout the observation period. All paraparetic patients recovered neurologically. There were no postoperative complications. CONCLUSION: Instrument-aided ligamentotaxis for compression and burst fractures utilizing the short contoured rod derotation technique and the instrumented stabilization of the fractured spine are found to be effective procedures which contribute to the fractured vertebral body consolidation without recollapse and maintain the motion segment function.

5.
Neurochem Res ; 29(10): 1807-16, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15532535

RESUMO

The present study investigated the effect of 1-methylated beta-carbolines (harmaline, harmalol and harmine) on change in the mitochondrial membrane permeability and cell death due to reactive nitrogen species in differentiated PC12 cells. beta-Carbolines, caspase inhibitors (z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell viability loss due to 3-morpholinosydnonimine (SIN-1) in PC12 cells. beta-Carbolines inhibited the nuclear damage, the decrease in mitochondrial transmembrane potential, the cytochrome c release, the formation of reactive oxygen species and the depletion of GSH caused by SIN-1 in PC12 cells. beta-Carbolines decreased the SIN-1-induced formations of 3-nitrotyrosine, malondialdehyde and carbonyls in PC12 cells. The results show that 1-methylated beta-carbolines attenuate SIN-1-induced mitochondrial damage. This results in the inhibition of caspase-9 and -3 and apoptotic cell death in PC12 cells by suppressing the toxic actions of reactive oxygen and nitrogen species, including the GSH depletion.


Assuntos
Carbolinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Molsidomina/análogos & derivados , Molsidomina/toxicidade , Animais , Carbolinas/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Mitocôndrias/metabolismo , Molsidomina/antagonistas & inibidores , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA