Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021201

RESUMO

Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. The hydrodynamic diameters of particles were typically withing the range of 108-190 nm, depending on degree of acetylation of the hydrophobic block. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We also demonstrated the biocompatibility and cellular effects of these materials in the context of drug delivery in different types of anticancer cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor, Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released over 3 h under the influence of HDAC8 enzyme in a controlled fashion. Further, we conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.

2.
Sci Rep ; 14(1): 14273, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902362

RESUMO

Tumor-derived extracellular vesicles (EVs) show great potential as biomarkers for several diseases, including pancreatic cancer, due to their roles in cancer development and progression. However, the challenge of utilizing EVs as biomarkers lies in their inherent heterogeneity in terms of size and concentration, making accurate quantification difficult, which is highly dependent on the isolation and quantification methods used. In our study, we compared three EV isolation techniques and two EV quantification methods. We observed variations in EV concentration, with approximately 1.5-fold differences depending on the quantification method used. Interestingly, all EV isolation techniques consistently yielded similar EV quantities, overall size distribution, and modal sizes. In contrast, we found a notable increase in total EV amounts in samples from pancreatic cancer cell lines, mouse models, and patient plasma, compared to non-cancerous conditions. Moreover, individual tumor-derived EVs exhibited at least a 3-fold increase in several EV biomarkers. Our data, obtained from EVs isolated using various techniques and quantified through different methods, as well as originating from various pancreatic cancer models, suggests that EV profiling holds promise for the identification of unique and cancer-specific biomarkers in pancreatic cancer.


Assuntos
Biomarcadores Tumorais , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares , Glipicanas , Neoplasias Pancreáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Glipicanas/metabolismo , Integrina alfaV/metabolismo
3.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586020

RESUMO

Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.

4.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626052

RESUMO

The subpopulations of tumor pericytes undergo pathological phenotype switching, affecting their normal function in upholding structural stability and cross-communication with other cells. In the case of pancreatic ductal adenocarcinoma (PDAC), a significant portion of blood vessels are covered by an α-smooth muscle actin (αSMA)-expressing pericyte, which is normally absent from capillary pericytes. The DesminlowαSMAhigh phenotype was significantly correlated with intratumoral hypoxia and vascular leakiness. Using an in vitro co-culture system, we demonstrated that cancer cell-derived exosomes could induce ectopic αSMA expression in pericytes. Exosome-treated αSMA+ pericytes presented altered pericyte markers and an acquired immune-modulatory feature. αSMA+ pericytes were also linked to morphological and biomechanical changes in the pericyte. The PDAC exosome was sufficient to induce αSMA expression by normal pericytes of the healthy pancreas in vivo, and the vessels with αSMA+ pericytes were leaky. This study demonstrated that tumor pericyte heterogeneity could be dictated by cancer cells, and a subpopulation of these pericytes confers a pathological feature.

5.
ACS Appl Bio Mater ; 5(5): 2163-2175, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35417133

RESUMO

Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier. Additionally, exosomes have the intrinsic yet enigmatic, targeting characteristics of complex cellular communication. Hence, harnessing the natural transport abilities of exosomes for drug delivery requires predictably targeting these biological nanoparticles. This manuscript describes the use of two chemical modifications, incorporating a neuropilin receptor agonist peptide (iRGD) and a hypoxia-responsive lipid for targeting and release of an encapsulated drug from bovine milk exosomes to triple-negative breast cancer cells. Triple-negative breast cancer is a very aggressive and deadly form of malignancy with limited treatment options. Incorporation of both the iRGD peptide and hypoxia-responsive lipid into the lipid bilayer of bovine milk exosomes and encapsulation of the anticancer drug, doxorubicin, created the peptide targeted, hypoxia-responsive bovine milk exosomes, iDHRX. Initial studies confirmed the presence of iRGD peptide and the exosomes' ability to target the αvß3 integrin, overexpressed on triple-negative breast cancer cells' surface. These modified exosomes were stable under normoxic conditions but fragmented in the reducing microenvironment created by 10 mM glutathione. In vitro cellular internalization studies in monolayer and three-dimensional (3D) spheroids of triple-negative breast cancer cells confirmed the cell-killing ability of iDHRX. Cell viability of 50% was reached at 10 µM iDHRX in the 3D spheroid models using four different triple-negative breast cancer cell lines. Overall, the tumor penetrating, hypoxia-responsive exosomes encapsulating doxorubicin would be effective in reducing triple-negative breast cancer cells' survival.


Assuntos
Exossomos , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Hipóxia/tratamento farmacológico , Lipídeos/uso terapêutico , Leite , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
6.
ACS Appl Mater Interfaces ; 14(6): 7671-7679, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113515

RESUMO

Integrin-targeting arginine-glycine-aspartic acid (RGD)-based nanocarriers have been widely used for tumor imaging, monitoring of tumor development, and delivery of anticancer drugs. However, the thermodynamics of an RGD-integrin formation and dissociation associated with binding dynamics, affinity, and stability remains unclear. Here, we probed the binding strength of the binary complex to live pancreatic cancer cells using single-molecule binding force spectroscopy methods, in which RGD peptides were functionalized on a force probe tip through poly(ethylene glycol) (PEG)-based bifunctional linker molecules. While the density of integrin αV receptors on the cell surface varies more than twofold from cell line to cell line, the individual RGD-integrin complexes exhibited a cell type-independent, monovalent bond strength. The load-dependent bond strength of multivalent RGD-integrin interactions scaled sublinearly with increasing bond number, consistent with the noncooperative, parallel bond model. Furthermore, the multivalent bonds ruptured sequentially either by one or in multiples, and the force strength was comparable to the synchronous rupture force. Comparison of energy landscapes of the bond number revealed a substantial decrease of kinetic off-rates for multivalent bonds, along with the increased width of the potential well and the increased potential barrier height between bound and unbound states, enhancing the stability of the multivalent bonds between them.


Assuntos
Integrinas , Neoplasias Pancreáticas , Membrana Celular/metabolismo , Humanos , Integrinas/metabolismo , Oligopeptídeos/química , Polietilenoglicóis/química
7.
ACS Omega ; 6(42): 27654-27667, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722965

RESUMO

Endoxifen is the primary active metabolite of tamoxifen, a nonsteroidal-selective estrogen receptor modulator (SERM) and widely used medication to treat estrogen receptor-positive (ER+) breast cancer. In this study, endoxifen was conjugated to the surface of polymeric nanoparticles (polymersomes) for targeted delivery of doxorubicin (DOX) to estrogen receptor-positive breast cancer cells (MCF7). Rapid cell growth and insufficient blood supply result in low oxygen concentration (hypoxia) within the solid breast tumors. The polymersomes developed here are prepared from amphiphilic copolymers of polylactic acid (PLA) and poly(ethylene glycol) (PEG) containing diazobenzene as the hypoxia-responsive linker. We prepared two nanoparticle formulations: DOX-encapsulated hypoxia-responsive polymersomes (DOX-HRPs) and endoxifen-conjugated, DOX-encapsulated hypoxia-responsive polymersomes (END-DOX-HRPs). Cellular internalization studies demonstrated eight times higher cytosolic and nuclear localization after incubating breast cancer cells with END-DOX-HRPs (targeted polymersomes) in contrast to DOX-HRPs (nontargeted polymersomes). Cytotoxicity studies on monolayer cell cultures exhibited that END-DOX-HRPs were three times more toxic to ER+ MCF7 cells than DOX-HRPs and free DOX in hypoxia. The cell viability studies on three-dimensional hypoxic cultures also demonstrated twice as much toxicity when the spheroids were treated with targeted polymersomes instead of nontargeted counterparts. This is the first report of surface-decorated polymeric nanoparticles with endoxifen ligands for targeted drug delivery to ER+ breast cancer microtumors. The newly designed endoxifen-conjugated, hypoxia-responsive polymersomes might have translational potential for ER+ breast cancer treatment.

8.
Oncotarget ; 12(12): 1165-1177, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34136085

RESUMO

The changes in cellular structure play an important role in cancer cell development, progression, and metastasis. By exploiting single-cell, force spectroscopy methods, we probed biophysical and biomechanical kinetics (stiffness, morphology, roughness, adhesion) of brain, breast, prostate, and pancreatic cancer cells with standard chemotherapeutic drugs in normoxia and hypoxia over 12-24 hours. After exposure to the drugs, we found that brain, breast, and pancreatic cancer cells became approximately 55-75% less stiff, while prostate cancer cells became more stiff, due to either drug-induced disruption or reinforcement of cytoskeletal structure. However, the rate of the stiffness change decreased up to 2-folds in hypoxia, suggesting a correlation between cellular stiffness and drug resistance of cancer cells in hypoxic tumor microenvironment. Also, we observed significant changes in the cell body height, surface roughness, and cytoadhesion of cancer cells after exposure to drugs, which followed the trend of stiffness. Our results show that a degree of chemotherapeutic drug effects on biomechanical and biophysical properties of cancer cells is distinguishable in normoxia and hypoxia, which are correlated with alteration of cytoskeletal structure and integrity during drug-induced apoptotic process.

9.
ACS Appl Bio Mater ; 4(2): 1450-1460, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33954285

RESUMO

High recurrence and metastasis to vital organs are the major characteristics of triple-negative breast cancer (TNBC). Low vascular oxygen tension promotes resistance to chemo- and radiation therapy. Neuropilin-1 (NRP-1) receptor is highly expressed on TNBC cells. The tumor-penetrating iRGD peptide interacts with the NRP-1 receptor, triggers endocytosis and transcytosis, and facilitates penetration. Herein, we synthesized a hypoxia-responsive diblock PLA-diazobenzene-PEG copolymer and prepared self-assembled hypoxia-responsive polymersomes (Ps) in an aqueous buffer. The iRGD peptide was incorporated into the polymersome structure to make hypoxia-responsive iRGD-conjugated polymersomes (iPs). Doxorubicin (DOX) was encapsulated in the polymersomes to prepare both targeted and non-targeted hypoxia-responsive polymersomes (DOX-iPs and DOX-Ps, respectively). The polymeric nanoparticles released less than 30% of their encapsulated DOX within 12 hours under normoxic conditions (21% oxygen), whereas under hypoxia (2% Oxygen), doxorubicin release remarkably increased to over 95%. The targeted polymersomes significantly decreased TNBC cells' viability in monolayer and spheroid cultures under hypoxia compared to normoxia. Animal studies displayed that targeted polymersomes significantly diminished tumor growth in xenograft nude mice. Overall, the targeted polymersomes exhibited potent anti-tumor activity in monolayer, spheroid, and animal models of TNBC. With further developments, the targeted nanocarriers discussed here might have the translational potential as drug carriers for the treatment of TNBC.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neuropilina-1/genética , Neuropilina-1/metabolismo , Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Pharm ; 17(11): 4312-4322, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32926627

RESUMO

Uncontrolled cell growth, division, and lack of enough blood supply causes low oxygen content or hypoxia in cancerous tumor microenvironments. 17ß-Estradiol (E2), an estrogen receptor (ER) ligand, can be incorporated on the surface of nanocarriers for targeted drug delivery to breast cancer cells overexpressing ER. In the present study, we synthesized estradiol-conjugated hypoxia-responsive polymeric nanoparticles (polymersomes) encapsulating the anticancer drug doxorubicin (E2-Dox-HRPs) for targeted delivery into the hypoxic niches of estrogen-receptor-positive breast cancer microtumors. Estradiol-conjugated polymersomes released over 90% of their encapsulated Dox in a sustained manner within hypoxia (2% oxygen) after 12 h. However, they released about 30% of Dox in normal oxygen partial pressure (21% oxygen, normoxia) during this time. Fluorescence microscopic studies demonstrated higher cytosolic and nuclear internalization of E2-Dox-HRPs (targeted polymersomes) compared to those of Dox-HRPs (nontargeted polymersomes). Monolayer cell viability studies on ER-positive MCF7 cells showed higher cytotoxicity of targeted polymersomes in hypoxia compared to in normoxia. Cytotoxicity studies with hypoxic three-dimensional spheroid cultures of MCF7 cells treated with targeted polymersomes indicated significant differences compared to those of normoxic spheroids. The novel estradiol-conjugated hypoxia-responsive polymersomes described here have the potential for targeted drug delivery in estrogen-receptor-positive breast cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/metabolismo , Hipóxia Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Estradiol/administração & dosagem , Nanopartículas/química , Polímeros/química , Receptores de Estrogênio/metabolismo , Esferoides Celulares/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Ligantes , Células MCF-7 , Esferoides Celulares/metabolismo , Microambiente Tumoral
11.
Mol Pharm ; 17(8): 2849-2863, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32521162

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hipóxia/tratamento farmacológico , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Polímeros/química
12.
Nanoscale Adv ; 2(8): 3411-3422, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36034734

RESUMO

Exosomes are naturally secreted extracellular bilayer vesicles (diameter 40-130 nm), which have recently been found to play a critical role in cell-to-cell communication and biomolecule delivery. Their unique characteristics-stability, permeability, biocompatibility and low immunogenicity-have made them a prime candidate for use in delivering cancer therapeutics and other natural products. Here we present the first ever report of echogenic exosomes, which combine the benefits of the acoustic responsiveness of traditional microbubbles with the non-immunogenic and small-size morphology of exosomes. Microbubbles, although effective as ultrasound contrast agents, are restricted to intravascular usage due to their large size. In the current study, we have rendered bovine milk-derived exosomes echogenic by freeze drying them in the presence of mannitol. Ultrasound imaging and direct measurement of linear and nonlinear scattered responses were used to investigate the echogenicity and stability of the prepared exosomes. A commercial scanner registered enhancement (28.9% at 40 MHz) in the brightness of ultrasound images in presence of echogenic exosomes at 5 mg/mL. The exosomes also showed significant linear and nonlinear scattered responses-11 dB enhancement in fundamental, 8.5 dB in subharmonic and 3.5 dB in second harmonic all at 40 µg/mL concentration. Echogenic exosomes injected into the tail vein of mice and the synovial fluid of rats resulted in significantly higher brightness-as much as 300%-of the ultrasound images, showing their promise in a variety of in vivo applications. The echogenic exosomes, with their large-scale extractability from bovine milk, lack of toxicity and minimal immunogenic response, successfully served as ultrasound contrast agents in this study and offer an exciting possibility to act as an effective ultrasound responsive drug delivery system.

13.
ACS Biomater Sci Eng ; 5(3): 1354-1365, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405653

RESUMO

Hyperbranched polymer-derived drug nanocarriers have been synthesized that can change sizes selectively in response to pH. These constructs were composed of tertiary amine-conjugated polycarbonate blocks "grafted from" a hyperbranched polyester polyol core. At neutral pH, unprotonated polycarbonate arms stabilized the copolymer aggregates in the form of nanoparticles with hydrodynamic diameters ranging from 150 to 190 nm. Upon lowering of pH, these larger aggregates disassembled into smaller nanoparticles with diameters of 3-5 nm as directed by protonation of tertiary amine side-chains. The pH-dependent reduction of particle sizes was evident by titrimetric, spectroscopic, dynamic light scattering, transmission electron, and atomic force microscopy-based experiments. We observed that these copolymeric nanoparticles could be loaded with dye and drug molecules either by noncovalent encapsulation or by covalent conjugation. A pH-induced disassembly of the aggregates initiated rapid release of the encapsulated payload, but not of the conjugated ones, thus establishing a controlled rate of therapeutic delivery from the nanostructures over an extended period. We envision that such systems can be used for drug delivery applications where nanoparticle sizes critically govern therapeutic efficiency in a vasculature-poor disease microenvironment such as desmoplasia in pancreatic cancer. Hence, we tested the cellular uptake, cytotoxicity, and chemotherapeutic potential of the size-modifiable nanoaggregates using gemcitabine as a model drug in pancreatic cancer setting. We observed that assembled nanoparticles were biocompatible to noncancerous cells, showed pH-dependent effects on cellular uptake as well as promoted accumulation within cancer cells cultured as 3D spheroids. We also found that when conjugated with gemcitabine, the resulting drug-loaded nanoparticles suppressed proliferation of cancer cells. Collectively, the studies suggested that these synthesized, pH-disassembling nanoscale platform will find applications as biomaterials for constructing a size-transformable drug nanocarriers where reduction of size takes effect near localized disease targets in response to microenvironmental triggers.

14.
Biomacromolecules ; 19(10): 4122-4132, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30169024

RESUMO

Chemotherapeutic agents for treating cancers show considerable side effects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport and subsequently release the encapsulated anticancer drugs within the nuclei of pancreatic cancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3-polyethylene glycol (PEG)-polylactic acid (PLA) copolymer employing the Cu2+ catalyzed "Click" reaction. We prepared polymersomes from the dexamethasone-PEG-PLA conjugate along with a synthesized stimuli-responsive polymer PEG-S-S-PLA. The dexamethasone group dilates the nuclear pore complexes and transports the vesicles to the nuclei. We designed the polymersomes to release the encapsulated drugs in the presence of a high concentration of reducing agents in the nuclei of pancreatic cancer cells. We observed that the nucleus-targeted, stimuli-responsive polymersomes released 70% of encapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulated the cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608 encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. The polymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medical ultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have the potential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.


Assuntos
Antineoplásicos/administração & dosagem , Benzofuranos/administração & dosagem , Núcleo Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Naftoquinonas/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular , Humanos , Naftoquinonas/química , Naftoquinonas/farmacologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Polímeros/administração & dosagem , Células Tumorais Cultivadas
15.
Colloids Surf B Biointerfaces ; 163: 225-235, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304437

RESUMO

Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG1900-S-S-PLA6000 and the N3-PEG1900-PLA6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N3-PEG1900-PLA6000 polymer via a Cu2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG1900-S-S-PLA6000, 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells.


Assuntos
Benzofuranos/farmacologia , Endocitose/efeitos dos fármacos , Naftoquinonas/farmacologia , Células-Tronco Neoplásicas/patologia , Oligopeptídeos/química , Polímeros/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reação de Cicloadição , Citometria de Fluxo , Humanos , Hidrodinâmica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neuropilina-1/metabolismo , Polímeros/síntese química
16.
Appl Phys Lett ; 110(20): 203701, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611486

RESUMO

Nanoelectronic devices integrated with dielectrophoresis (DEP) have been promoted as promising platforms for trapping, separating, and concentrating target biomarkers and cancer cells from a complex medium. Here, we visualized DEP and DEP gradients in conventional nanoelectronic devices by using multi-pass atomic force microcopy techniques. Our measurements directly demonstrated a short range DEP only at sharp step edges of electrodes, frequency dependent DEP polarity, and separation distance dependent DEP strength. Additionally, non-uniform DEP along the edges of the electrodes due to a large variation in electric field strength was observed. The strength and apparent working distance of DEP were measured to be an order of a few nN and 80 nm within the limited scale of particles and other parameters such as an ionic strength of the medium. This method provides a powerful tool to quantify the strength and polarity of DEP and allows optimizing and calibrating the device's operating parameters including the driving field strength for the effective control and manipulation of target biomolecules.

17.
Mol Pharm ; 14(6): 1916-1928, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28493710

RESUMO

Improving the therapeutic index of anticancer agents is an enormous challenge. Targeting decreases the side effects of the therapeutic agents by delivering the drugs to the intended destination. Nanocarriers containing the nuclear localizing peptide sequences (NLS) translocate to the cell nuclei. However, the nuclear localization peptides are nonselective and cannot distinguish the malignant cells from the healthy counterparts. In this study, we designed a "masked" NLS peptide which is activated only in the presence of overexpressed matrix metalloproteinase-7 (MMP-7) enzyme in the pancreatic cancer microenvironment. This peptide is conjugated to the surface of redox responsive polymersomes to deliver doxorubicin and curcumin to the pancreatic cancer cell nucleus. We have tested the formulation in both two- and three-dimensional cultures of pancreatic cancer and normal cells. Our studies revealed that the drug-encapsulated polymeric vesicles are significantly more toxic toward the cancer cells (shrinking the spheroids up to 49%) compared to the normal cells (shrinking the spheroids up to 24%). This study can lead to the development of other organelle targeted drug delivery systems for various human malignancies.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Curcumina/administração & dosagem , Curcumina/farmacologia , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pancreáticas/metabolismo , Peptídeos/química , Polímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Microscopia de Força Atômica , Oxirredução/efeitos dos fármacos
18.
ACS Omega ; 1(5): 952-962, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27917408

RESUMO

Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly (p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems.

19.
Bioconjug Chem ; 27(8): 1830-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27391789

RESUMO

Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Neoplasias Pancreáticas/patologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Compostos Azo/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Oligopeptídeos/química , Polietilenoglicóis/química
20.
Biomacromolecules ; 17(8): 2507-13, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27303825

RESUMO

Hypoxia in tumors contributes to overall tumor progression by assisting in epithelial-to-mesenchymal transition, angiogenesis, and metastasis of cancer. In this study, we have synthesized a hypoxia-responsive, diblock copolymer poly(lactic acid)-azobenzene-poly(ethylene glycol), which self-assembles to form polymersomes in an aqueous medium. The polymersomes did not release any encapsulated contents for 50 min under normoxic conditions. However, under hypoxia, 90% of the encapsulated dye was released in 50 min. The polymersomes encapsulated the combination of anticancer drugs gemcitabine and erlotinib with entrapment efficiency of 40% and 28%, respectively. We used three-dimensional spheroid cultures of pancreatic cancer cells BxPC-3 to demonstrate hypoxia-mediated release of the drugs from the polymersomes. The vesicles were nontoxic. However, a significant decrease in cell viability was observed in hypoxic spheroidal cultures of BxPC-3 cells in the presence of drug encapsulated polymersomes. These polymersomes have potential for future applications in imaging and treatment of hypoxic tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Hipóxia/fisiopatologia , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros/química , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sobrevivência Celular , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Humanos , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA