Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Adolesc Gynecol ; 36(6): 541-544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37451429

RESUMO

OBJECTIVES: The objectives of the study were to compare the demographic characteristics, presenting complaints, timeliness of diagnosis, and treatments given to all patients diagnosed with obstructive hemivagina ipsilateral renal agenesis (OHVIRA) between the adolescent group (age 10-19) and the adult group (age 20 and above) and to propose a feasible screening test consisting of routine bedside ultrasound to detect renal anomalies in addition to pelvic ultrasound during the assessment of females with gynecologic complications in resource-limited settings. METHOD AND ANALYSIS: We conducted a retrospective cohort analysis of all patients with OHVIRA at our institution, Sabah Women and Children's Hospital, Malaysia, between the 2013 and 2022. Data were collected by reviewing patients' medical notes. RESULTS: There were a total of 18 patients diagnosed with OHVIRA from 2013 to 2022, aged 10-41 years old. Nine patients (50%) presented during adolescence. Most (88.9%) came with symptoms such as abdominal pain, urinary symptoms, abnormal uterine bleeding, foul-smelling vaginal discharge, and primary infertility, whereas only 2 patients (11.1%) were asymptomatic and diagnosed incidentally. Acute abdomen was more common in the adolescent group (P = .015). No significant difference was found on the side of the renal anomaly. CONCLUSION: Presenting symptoms vary and are often mimicked other gynecologic or surgical conditions, making the diagnosis difficult and delayed. Some patients were incidentally diagnosed while being managed for other problems, and it was not uncommon to have unnecessary surgery before the correct diagnosis was made. We suggest that all female patients with abdominal and pelvic complaints should be screened for renal anomaly during pelvic scan to improve diagnostic rates.


Assuntos
Anormalidades Múltiplas , Vagina , Criança , Adulto , Adolescente , Feminino , Humanos , Adulto Jovem , Malásia , Estudos Retrospectivos , Vagina/anormalidades , Anormalidades Múltiplas/cirurgia , Rim/diagnóstico por imagem , Rim/anormalidades , Síndrome , Útero/anormalidades
2.
Cell Host Microbe ; 29(7): 1177-1185.e6, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34043959

RESUMO

Persistent and intermittent fecal shedding, hallmarks of Salmonella infections, are important for fecal-oral transmission. In the intestine, Salmonella enterica serovar Typhimurium (STm) actively invades intestinal epithelial cells (IECs) and survives in the Salmonella-containing vacuole (SCV) and the cell cytosol. Cytosolic STm replicate rapidly, express invasion factors, and induce extrusion of infected epithelial cells into the intestinal lumen. Here, we engineered STm that self-destruct in the cytosol (STmCytoKill), but replicates normally in the SCV, to examine the role of cytosolic STm in infection. Intestinal expansion and fecal shedding of STmCytoKill are impaired in mouse models of infection. We propose a model whereby repeated rounds of invasion, cytosolic replication, and release of invasive STm from extruded IECs fuels the high luminal density required for fecal shedding.


Assuntos
Citosol/microbiologia , Células Epiteliais/microbiologia , Fezes/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Feminino , Células HeLa , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Vacúolos/microbiologia
3.
Mol Microbiol ; 112(4): 1270-1283, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31370104

RESUMO

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that invades the intestinal epithelium. Following invasion of epithelial cells, Salmonella survives and replicates within two distinct intracellular niches. While all of the bacteria are initially taken up into a membrane bound vacuole, the Salmonella-containing vacuole or SCV, a significant proportion of them promptly escape into the cytosol. Cytosolic Salmonella replicates more rapidly compared to the vacuolar population, although the reasons for this are not well understood. SipA, a multi-function effector protein, has been shown to affect intracellular replication and is secreted by cytosolic Salmonella via the invasion-associated Type III Secretion System 1 (T3SS1). Here, we have used a multipronged microscopy approach to show that SipA does not affect bacterial replication rates per se, but rather mediates intra-cytosolic survival and/or initiation of replication following bacterial egress from the SCV. Altogether, our findings reveal an important role for SipA in the early survival of cytosolic Salmonella.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Adaptação Fisiológica/fisiologia , Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Citoplasma/metabolismo , Citosol/metabolismo , Citosol/fisiologia , Células Epiteliais/fisiologia , Células HeLa , Humanos , Proteínas dos Microfilamentos/fisiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/fisiologia , Vacúolos/fisiologia
4.
PLoS Pathog ; 13(4): e1006354, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28426838

RESUMO

Type III secretion system 1 (T3SS1) is used by the enteropathogen Salmonella enterica serovar Typhimurium to establish infection in the gut. Effector proteins translocated by this system across the plasma membrane facilitate invasion of intestinal epithelial cells. One such effector, the inositol phosphatase SopB, contributes to invasion and mediates activation of the pro-survival kinase Akt. Following internalization, some bacteria escape from the Salmonella-containing vacuole into the cytosol and there is evidence suggesting that T3SS1 is expressed in this subpopulation. Here, we investigated the post-invasion role of T3SS1, using SopB as a model effector. In cultured epithelial cells, SopB-dependent Akt phosphorylation was observed at two distinct stages of infection: during and immediately after invasion, and later during peak cytosolic replication. Single cell analysis revealed that cytosolic Salmonella deliver SopB via T3SS1. Although intracellular replication was unaffected in a SopB deletion mutant, cells infected with ΔsopB demonstrated a lack of Akt phosphorylation, earlier time to death, and increased lysis. When SopB expression was induced specifically in cytosolic Salmonella, these effects were restored to levels observed in WT infected cells, indicating that the second wave of SopB protects this infected population against cell death via Akt activation. Thus, T3SS1 has two, temporally distinct roles during epithelial cell colonization. Additionally, we found that delivery of SopB by cytosolic bacteria was translocon-independent, in contrast to canonical effector translocation across eukaryotic membranes, which requires formation of a translocon pore. This mechanism was also observed for another T3SS1 effector, SipA. These findings reveal the functional and mechanistic adaptability of a T3SS that can be harnessed in different microenvironments.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/fisiologia , Sistemas de Secreção Tipo III/metabolismo , Animais , Proteínas de Bactérias/genética , Replicação do DNA , Células Epiteliais/fisiologia , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/genética
5.
Infect Immun ; 83(7): 2661-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895967

RESUMO

Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Sobrevivência Celular , Células Cultivadas , Ilhas Genômicas , Humanos , Salmonella typhimurium/genética
6.
Cell Microbiol ; 16(6): 862-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286610

RESUMO

Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP-LC3-expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post-infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O-antigen biosynthesis. Consistent with the HimarFT mutants, in-frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O-antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild-type Francisella, the O-antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy-deficient macrophages partially supported replication of both mutants, indicating that O-antigen-lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.


Assuntos
Autofagia , Francisella tularensis/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Antígenos O/imunologia , Antígenos O/metabolismo , Animais , Células Cultivadas , Citosol/microbiologia , Elementos de DNA Transponíveis , Francisella tularensis/fisiologia , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C57BL , Mutagênese Insercional
7.
PLoS One ; 8(6): e67965, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840797

RESUMO

Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella, indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host-pathogen interface to influence the intracellular fate of this pathogen.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Francisella tularensis/crescimento & desenvolvimento , Macrófagos/microbiologia , Tularemia/microbiologia , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Tularemia/metabolismo , Tularemia/patologia , Fatores de Virulência/genética
8.
Autophagy ; 8(9): 1342-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863802

RESUMO

Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.


Assuntos
Autofagia , Citosol/microbiologia , Replicação do DNA , Francisella tularensis/fisiologia , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Endocitose , Endossomos/microbiologia , Endossomos/ultraestrutura , Francisella tularensis/ultraestrutura , Proteínas de Choque Térmico/metabolismo , Humanos , Espaço Intracelular/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Proteína Sequestossoma-1 , Ubiquitina/metabolismo , Vacúolos/microbiologia , Vacúolos/ultraestrutura
9.
J Bacteriol ; 193(17): 4346-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742865

RESUMO

The Gram-negative intracellular pathogen Legionella pneumophila replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophila expressing a translocation reporter consisting of the Bordetella pertussisa denylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2 induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophila may require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophila replication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophila proliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperoninas/metabolismo , Legionella pneumophila/crescimento & desenvolvimento , Poliaminas/metabolismo , Adenosilmetionina Descarboxilase/metabolismo , Animais , Proteínas de Bactérias/genética , Células CHO , Proliferação de Células , Sobrevivência Celular , Chaperoninas/genética , Biologia Computacional , Cricetinae , Cricetulus , Meios de Cultura , Citoplasma/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Camundongos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Células U937 , Vacúolos/metabolismo
10.
Cell Microbiol ; 11(7): 1128-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19388904

RESUMO

Summary The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis ssp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profiles. Phagocytosed bacteria rapidly responded to their intracellular environment and subsequently altered their transcriptional profile. Differential gene expression profiles were revealed that correlated with specific intracellular locale of the bacteria. Upregulation of general and oxidative stress response genes was a hallmark of the early phagosomal and late endosomal stages, while induction of transport and metabolic genes characterized the cytosolic replication stage. Expression of the Francisella Pathogenicity Island (FPI) genes, which are required for intracellular proliferation, increased during the intracellular cycle. Similarly, 27 chromosomal loci encoding putative hypothetical, secreted, outer membrane proteins or transcriptional regulators were identified as upregulated. Among these, deletion of FTT0383, FTT0369c or FTT1676 abolished the ability of Schu S4 to survive or proliferate intracellularly and cause lethality in mice, therefore identifying novel determinants of Francisella virulence from their intracellular expression profile.


Assuntos
Francisella tularensis/fisiologia , Perfilação da Expressão Gênica , Macrófagos/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Virulência/biossíntese , Animais , Transporte Biológico , Células Cultivadas , Citosol/microbiologia , Endossomos/microbiologia , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/patogenicidade , Genes Bacterianos , Ilhas Genômicas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Estresse Oxidativo , Fagossomos/microbiologia , Estresse Fisiológico , Virulência
11.
Infect Immun ; 76(12): 5488-99, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18852245

RESUMO

Francisella tularensis is an intracellular pathogen that can survive and replicate within macrophages. Following phagocytosis and transient interactions with the endocytic pathway, F. tularensis rapidly escapes from its original phagosome into the macrophage cytoplasm, where it eventually replicates. To examine the importance of the nascent phagosome for the Francisella intracellular cycle, we have characterized early trafficking events of the F. tularensis subsp. tularensis strain Schu S4 in a murine bone marrow-derived macrophage model. Here we show that early phagosomes containing Schu S4 transiently interact with early and late endosomes and become acidified before the onset of phagosomal disruption. Inhibition of endosomal acidification with the vacuolar ATPase inhibitor bafilomycin A1 or concanamycin A prior to infection significantly delayed but did not block phagosomal escape and cytosolic replication, indicating that maturation of the early Francisella-containing phagosome (FCP) is important for optimal phagosomal escape and subsequent intracellular growth. Further, Francisella pathogenicity island (FPI) protein expression was induced during early intracellular trafficking events. Although inhibition of endosomal acidification mimicked the early phagosomal escape defects caused by mutation of the FPI-encoded IglCD proteins, it did not inhibit the intracellular induction of FPI proteins, demonstrating that this response is independent of phagosomal pH. Altogether, these results demonstrate that early phagosomal maturation is required for optimal phagosomal escape and that the early FCP provides cues other than intravacuolar pH that determine intracellular induction of FPI proteins.


Assuntos
Francisella tularensis/patogenicidade , Regulação Viral da Expressão Gênica , Ilhas Genômicas/fisiologia , Fagossomos/microbiologia , Tularemia/genética , Animais , Proteínas de Bactérias/biossíntese , Western Blotting , Endossomos/metabolismo , Endossomos/microbiologia , Imunofluorescência , Francisella tularensis/fisiologia , Macrófagos/microbiologia , Camundongos , Microscopia Eletrônica de Transmissão , Fagossomos/metabolismo , Tularemia/metabolismo , Fatores de Virulência/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA