Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Gene Med ; 26(3): e3681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484722

RESUMO

Doxorubicin is a commonly used anti-cancer drug used in treating a variety of malignancies. However, a major adverse effect is cardiotoxicity, which is dose dependent and can be either acute or chronic. Doxorubicin causes injury by DNA damage, the formation of free reactive oxygen radicals and induction of apoptosis. Our aim is to induce expression of the multidrug resistance-associated protein 1 (MRP1) in cardiomyocytes derived from human iPS cells (hiPSC-CM), to determine whether this will allow cells to effectively remove doxorubicin and confer cardioprotection. We generated a lentivirus vector encoding MRP1 (LV.MRP1) and validated its function in HEK293T cells and stem cell-derived cardiomyocytes (hiPSC-CM) by quantitative PCR and western blot analysis. The activity of the overexpressed MRP1 was also tested, by quantifying the amount of fluorescent dye exported from the cell by the transporter. We demonstrated reduced dye sequestration in cells overexpressing MRP1. Finally, we demonstrated that hiPSC-CM transduced with LV.MRP1 were protected against doxorubicin injury. In conclusion, we have shown that we can successfully overexpress MRP1 protein in hiPSC-CM, with functional transporter activity leading to protection against doxorubicin-induced toxicity.


Assuntos
Cardiotoxicidade , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Miócitos Cardíacos , Humanos , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Células HEK293 , Doxorrubicina/farmacologia
2.
Mol Ther Methods Clin Dev ; 30: 459-473, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37674904

RESUMO

Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.

4.
Heart Lung Circ ; 32(7): 798-807, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407301

RESUMO

Ischaemic heart disease is the primary cause of death worldwide with myocardial infarction (MI) contributing to significant morbidity and mortality. The human heart has a limited capacity to regenerate and the significant loss of cardiomyocytes after MI can overwhelm this limited innate regenerative capability. This is in part compensated for by the creation of collagen-rich scar tissue. Therapeutic angiogenesis is an exciting prospect that can assist cardiac regeneration after MI with various approaches having been explored. This review will focus on results from clinical growth factor trials, and the lack of clinical translation. Inconsistencies in results from these may be due to heterogeneity within patient selection and an incomplete understanding of therapeutic differences between isoforms of active agents. The technology used has also evolved with recombinant protein and, subsequently, gene therapy being utilised. Innovative therapeutic designs, such as combinatorial therapies, might help to resolve these issues in the future.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Terapia Genética
5.
Heart Lung Circ ; 32(4): 480-486, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801127

RESUMO

BACKGROUND: Recent studies suggest that the risk factor profile of patients presenting with ST elevation myocardial infarction (STEMI) is changing. AIM: The aim is to determine if there has been a shift of cardiovascular risk factors to cardiometabolic causes in the first presentation STEMI population. METHOD: We analysed data from a STEMI registry from a large tertiary referral percutaneous coronary intervention centre to determine the prevalence and trends of the modifiable risk factors of hypertension, diabetes, smoking and hypercholesterolaemia. PARTICIPANTS: Consecutive first presentation STEMI patients between January 2006 to December 2018. RESULTS: Among the 2,366 patients included (mean age 59, SD 12.66, 80% male) the common risk factors were hypertension (47%), hypercholesterolaemia (47%) current smoking (42%) and diabetes (27%). Over the 13 years, patients with diabetes (20% to 26%, OR 1.09 per year, CI 1.06-1.11, p<0.001) and patients with no modifiable risk factors increased (9% to 17%, OR 1.08, CI 1.04-1.11, p<0.001). Concurrently there was a fall in prevalence of hypercholesterolaemia, (47% to 37%, OR 0.94 per year, CI 0.92-0.96, p<0.001) and smoking (44% to 41%, OR 0.94, CI 0.92-0.96, p<0.001) but no significant change in rates of hypertension (53% to 49%, OR 0.99, CI 0.97-1.01, p=0.25). CONCLUSION: The risk factor profile of first presentation STEMI has changed over time with a reduction in smoking and a concurrent rise in patients with no traditional risk factors. This suggests the mechanism of STEMI may be changing and further investigation of potential causal factors is warranted for the prevention and management of cardiovascular disease.


Assuntos
Diabetes Mellitus , Hipercolesterolemia , Hipertensão , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/epidemiologia , Hipercolesterolemia/complicações , Hipercolesterolemia/epidemiologia , Fatores de Risco , Diabetes Mellitus/epidemiologia , Hipertensão/complicações , Hipertensão/epidemiologia , Sistema de Registros , Resultado do Tratamento
6.
Nat Commun ; 13(1): 5206, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064843

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet serious adverse effect of the adenoviral vector vaccines ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Janssen) against COVID-19. The mechanisms involved in clot formation and thrombocytopenia in VITT are yet to be fully determined. Here we show neutrophils undergoing NETosis and confirm expression markers of NETs in VITT patients. VITT antibodies directly stimulate neutrophils to release NETs and induce thrombus formation containing abundant platelets, neutrophils, fibrin, extracellular DNA and citrullinated histone H3 in a flow microfluidics system and in vivo. Inhibition of NETosis prevents VITT-induced thrombosis in mice but not thrombocytopenia. In contrast, in vivo blockage of FcγRIIa abrogates both thrombosis and thrombocytopenia suggesting these are distinct processes. Our findings indicate that anti-PF4 antibodies activate blood cells via FcγRIIa and are responsible for thrombosis and thrombocytopenia in VITT. Future development of NETosis and FcγRIIa inhibitors are needed to treat VITT and similar immune thrombotic thrombocytopenia conditions more effectively, leading to better patient outcomes.


Assuntos
COVID-19 , Armadilhas Extracelulares , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Vacinas , Ad26COVS1 , Animais , ChAdOx1 nCoV-19 , Armadilhas Extracelulares/metabolismo , Humanos , Camundongos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Trombocitopenia/induzido quimicamente , Trombose/prevenção & controle , Vacinas/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012498

RESUMO

Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Potenciais de Ação , Animais , Relógios Biológicos/fisiologia , Dependovirus , Vetores Genéticos/genética , Miócitos Cardíacos/metabolismo , Ratos
8.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893689

RESUMO

Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Baculoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos
9.
Cytotherapy ; 23(12): 1074-1084, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34588150

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials. METHODS: Four days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall. RESULTS: One month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits. CONCLUSIONS: The authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an "off-the-shelf" stem cell therapy for cardiac repair.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Infarto do Miocárdio/terapia , Miocárdio , Ratos
10.
Int J Cardiol ; 341: 24-30, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265313

RESUMO

BACKGROUND: Novel therapies that can limit or reverse damage caused by myocardial infarction (MI) could ease the increasing burden of heart failure. In this regard Platelet Derived Growth Factor (PDGF) has been previously shown to contribute to cardiac repair after MI. Here, we use a rodent model of MI and recombinant adeno-associated virus 9 (rAAV9)-mediated gene transfer to overexpress Pdgf-a in the injured heart and assess its therapeutic potential. METHODS AND RESULTS: Sprague Dawley rats underwent temporary occlusion of the left anterior descending coronary artery, followed immediately by systemic delivery of 1 × 10^11 vector genomes of either rAAV9 Pdgf-a or rAAV9 Empty vector (control). At day 28 post-MI echocardiography showed significantly improved left ventricular (LV) function (fractional shortening) after rAAV9 Pdgf-a (0.394 ± 0.019%) treatment vs control (0.304 ± 0.018%). Immunohistochemical analysis demonstrated significantly increased capillary and arteriolar density in the infarct border zone of rAAV9 Pdgf-a treated hearts together with a significant reduction in infarct scar size (rAAV9 Pdgf-a 6.09 ± 0.94% vs Empty 12.45 ± 0.92%). Western blot and qPCR analyses confirmed overexpression of PDGF-A and showed upregulation of smooth muscle alpha actin (Acta2), collagen type III alpha 1 (Col3a1) and lysyl oxidase (Lox) genes in rAAV9 Pdgf-a treated infarcts. CONCLUSION: Overexpression of Pdgf-a in the post-MI heart can modulate scar composition and improve LV function. Our study highlights the potential of rAAV gene transfer of Pdgf-a as a cardio-reparative therapy.


Assuntos
Cicatriz , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miocárdio/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda , Remodelação Ventricular
11.
Clin Ther ; 42(10): 1923-1943, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010930

RESUMO

PURPOSE: Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS: This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS: After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS: An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.


Assuntos
Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Cicatrização/imunologia , Animais , Morte Celular , Exossomos/metabolismo , Humanos , Imunidade , Qualidade de Vida
12.
Clin Ther ; 42(10): 1880-1891, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32938532

RESUMO

PURPOSE: Cardiac pathologies remain a dominant cause of morbidity and mortality within the community. The drive to develop therapies capable of repairing damaged heart tissue to achieve clinically significant restoration of function has motivated the pursuit of novel approaches such as cell therapy. To this end, evidence of therapeutic benefits achieved by using mesenchymal stem cells (MSCs) has captured considerable interest despite a relative lack of information regarding the mechanisms involved. This narrative review synthesizes and interprets the current literature describing mechanisms by which MSCs can elicit cardiac repair, thereby directing attention to avenues of further inquiry. METHODS: OVID versions of MEDLINE and EMBASE were searched for studies describing the role of MSCs in mammalian cardiac repair. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS: MSCs elicit cardiac repair in a range of in vitro systems and animal models of diseases such as myocardial infarction and heart failure. Important mechanisms include the preservation of myocardial contractility, the promotion of angiogenesis, and the modulation of fibrosis. Exposing in vitro MSCs to a microenvironment reflective of that encountered in the injured heart seems to potentiate these therapeutic mechanisms. IMPLICATIONS: Promising results in animal studies warrant continuation of clinical MSC cardiac therapy studies. Paracrine functions of MSCs seem to be the dominant mechanism of cardiac repair over direct cellular effects. Although integral, the MSC secretome remains poorly defined. In addition, most of the mechanistic data within the literature have been derived from animal MSC research, necessitating more human MSC-based work.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fibroblastos/citologia , Coração/fisiopatologia , Humanos , Células Musculares/citologia
13.
Clin Ther ; 42(10): 1857-1879, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32943195

RESUMO

PURPOSE: We review the history of cardiac cell therapy, highlighting lessons learned from initial adult stem cell (ASC) clinical trials. We present pluripotent stem cell-derived cardiomyocytes (PSC-CMs) as a leading candidate for robust regeneration of infarcted myocardium but identify several issues that must be addressed before successful clinical translation. METHODS: We conducted an unstructured literature review of PubMed-listed articles, selecting the most comprehensive and relevant research articles, review articles, clinical trials, and basic or translation articles in the field of cardiac cell therapy. Articles were identified using the search terms adult stem cells, pluripotent stem cells, cardiac stem cell, and cardiac regeneration or from references of relevant articles, Articles were prioritized and selected based on their impact, originality, or potential clinical applicability. FINDINGS: Since its inception, the ASC therapy field has been troubled by conflicting preclinical data, academic controversies, and inconsistent trial designs. These issues have damaged perceptions of cardiac cell therapy among investors, the academic community, health care professionals, and, importantly, patients. In hindsight, the key issue underpinning these problems was the inability of these cell types to differentiate directly into genuine cardiomyocytes, rendering them unable to replace damaged myocardium. Despite this, beneficial effects through indirect paracrine or immunomodulatory effects remain possible and continue to be investigated. However, in preclinical models, PSC-CMs have robustly remuscularized infarcted myocardium with functional, force-generating cardiomyocytes. Hence, PSC-CMs have now emerged as a leading candidate for cardiac regeneration, and unpublished reports of first-in-human delivery of these cells have recently surfaced. However, the cardiac cell therapy field's history should serve as a cautionary tale, and we identify several translational hurdles that still remain. Preclinical solutions to issues such as arrhythmogenicity, immunogenicity, and poor engraftment rates are needed, and next-generation clinical trials must draw on robust knowledge of mechanistic principles of the therapy. IMPLICATIONS: The clinical transplantation of functional stem cell-derived heart tissue with seamless integration into native myocardium is a lofty goal. However, considerable advances have been made during the past 2 decades. Currently, PSC-CMs appear to be the best prospect to reach this goal, but several hurdles remain. The history of adult stem cell trials has taught us that shortcuts cannot be taken without dire consequences, and it is essential that progress not be hurried and that a worldwide, cross-disciplinary approach be used to ensure safe and effective clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Regeneração , Transplante de Células-Tronco/métodos
14.
Sci Transl Med ; 12(524)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894101

RESUMO

Therapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion. Thirty-six pigs were randomized to sham procedure or balloon occlusion of the proximal left anterior descending coronary artery with 7-day intravenous infusion of rhPDGF-AB or vehicle. One month after MI, rhPDGF-AB improved survival by 40% compared with vehicle, and cardiac magnetic resonance imaging showed left ventricular (LV) ejection fraction improved by 11.5%, driven by reduced LV end-systolic volumes. Pressure volume loop analyses revealed improved myocardial contractility and energetics after rhPDGF-AB treatment with minimal effect on ventricular compliance. rhPDGF-AB enhanced angiogenesis and increased scar anisotropy (high fiber alignment) without affecting overall scar size or stiffness. rhPDGF-AB reduced inducible ventricular tachycardia by decreasing heterogeneity of the ventricular scar that provides a substrate for reentrant circuits. In summary, we demonstrated that rhPDGF-AB promotes post-MI cardiac wound repair by altering the mechanics of the infarct scar, resulting in robust cardiac functional improvement, decreased ventricular arrhythmias, and improved survival. Our findings suggest a strong translational potential for rhPDGF-AB as an adjunct to current MI treatment and possibly to modulate scar in other organs.


Assuntos
Cicatriz/patologia , Infarto do Miocárdio/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arteríolas/efeitos dos fármacos , Arteríolas/patologia , Arteríolas/fisiopatologia , Cicatriz/complicações , Cicatriz/tratamento farmacológico , Cicatriz/fisiopatologia , Colágeno/metabolismo , Fibrose , Testes de Função Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Suínos , Cicatrização/efeitos dos fármacos
15.
Sci Rep ; 9(1): 10579, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332256

RESUMO

We have previously reported a subpopulation of mesenchymal stromal cells (MSCs) within the platelet-derived growth factor receptor-alpha (PDGFRα)/CD90 co-expressing cardiac interstitial and adventitial cell fraction. Here we further characterise PDGFRα/CD90-expressing cardiac MSCs (PDGFRα + cMSCs) and use human telomerase reverse transcriptase (hTERT) over-expression to increase cMSCs ability to repair the heart after induced myocardial infarction. hTERT over-expression in PDGFRα + cardiac MSCs (hTERT + PDGFRα + cMSCs) modulates cell differentiation, proliferation, survival and angiogenesis related genes. In vivo, transplantation of hTERT + PDGFRα + cMSCs in athymic rats significantly increased left ventricular function, reduced scar size, increased angiogenesis and proliferation of both cardiomyocyte and non-myocyte cell fractions four weeks after myocardial infarction. In contrast, transplantation of mutant hTERT + PDGFRα + cMSCs (which generate catalytically-inactive telomerase) failed to replicate this cardiac functional improvement, indicating a telomerase-dependent mechanism. There was no hTERT + PDGFRα + cMSCs engraftment 14 days after transplantation indicating functional improvement occurred by paracrine mechanisms. Mass spectrometry on hTERT + PDGFRα + cMSCs conditioned media showed increased proteins associated with matrix modulation, angiogenesis, cell proliferation/survival/adhesion and innate immunity function. Our study shows that hTERT can activate pro-regenerative signalling within PDGFRα + cMSCs and enhance cardiac repair after myocardial infarction. An increased understanding of hTERT's role in mesenchymal stromal cells from various organs will favourably impact clinical regenerative and anti-cancer therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/enzimologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/enzimologia , Telomerase/metabolismo , Animais , Criança , Humanos , Pessoa de Meia-Idade , Miócitos Cardíacos/transplante , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
16.
J Am Heart Assoc ; 8(1): e011028, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30595080

RESUMO

Background Neutrophil gelatinase-associated lipocalin ( NGAL ) or lipocalin 2 may promote atherosclerosis and plaque instability leading to increased risk of cardiac events. We investigated the relationships between plasma NGAL , cardiovascular disease biomarkers, and long-term cardiac events. Methods and Results The study population consisted of 1131 ambulant older white women (mean age 75 years) without clinical coronary heart disease ( CHD ) and measures of plasma NGAL in the Perth Longitudinal Study of Ageing Women with 14.5-year CHD and heart failure hospitalizations or death (events) captured using linked records. Over 14.5 years, 256 women had CHD events, while 118 had heart failure events. Per SD increase in log-transformed NGAL there was a 35% to 37% increase in relative hazards for CHD and heart failure events in unadjusted analyses, which remained significant after adjustment for conventional risk factors for CHD events (hazard ratio 1.29, 95% CI 1.13-1.48, P<0.001) but not heart failure ( P>0.05). Women in the highest 2 quartiles of NGAL had higher relative hazards for CHD events compared with women in the lowest quartile hazard ratio 1.61, 95% CI 1.08-2.39, P=0.019 and hazard ratio 1.97, 95% CI 1.33-3.93, P=0.001, respectively. These associations were independent of high-sensitivity cardiac troponin I, homocysteine, and estimated renal function. NGAL correctly reclassified 1 in 4 women who sustained a CHD event up in risk and 1 in 10 women without CHD events down in risk. Conclusions NGAL was associated with increased risk of long-term CHD events, independent of conventional risk factors and biomarkers. These findings provide mechanistic insight into the role of NGAL with cardiac events.


Assuntos
Cardiopatias/sangue , Hospitalização/tendências , Lipocalina-2/sangue , Medição de Risco/métodos , Saúde da Mulher , Idoso , Biomarcadores/sangue , Causas de Morte/tendências , Feminino , Seguimentos , Cardiopatias/mortalidade , Cardiopatias/terapia , Humanos , New South Wales/epidemiologia , Prognóstico , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Fatores de Tempo
17.
Stem Cells Dev ; 27(3): 184-198, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205098

RESUMO

Cardiac progenitor cells (CPCs) are being developed as a promising treatment for heart failure. Although clinical trials have predominantly used donor cardiac biopsies to derive CPCs, a better solution could be to use previously cryopreserved human heart tissue. This would enable timely and convenient access to healthy and young heart samples for CPC production. However, few studies have attempted to isolate CPCs from previously cryopreserved heart tissue. In this study, we isolated CPCs from eight nondiseased human heart samples previously cryopreserved as part of the Sydney Heart Bank. Resulting cells were strongly positive for known fibroblast (DDR2, Vimentin), mesenchymal/CPC (PDGFRα, CD90) markers, and for pluripotency genes (SOX2, NANOG, MYC, KLF4), whereas being negative for the pan-hematopoietic marker (CD45). Outgrowth cells from aged hearts had decreased proliferative and self-renewing capacity that correlated with shorter telomere lengths compared with cells from young hearts. No telomerase activity was detected in any cells isolated. Colony-forming assays and fluorescence-activated cell sorting were used to enrich PDGFRα+/CD90+/CD31- CPCs. Multipotent potential was confirmed using in vitro differentiation assays with smooth muscle (MYH11+), endothelial cell (vWF+), and cardiomyocyte-like (cTnT+, α-actinin+) cell formation. Single cell assays demonstrated clonogenicity of PDGFRα+ CPCs with maintenance of prolonged self-renewing capacity (>2 months), and pluripotency gene expression at both early and late culture passages. Our results demonstrate that multipotent PDGFRα+ CPCs can be harvested and expanded from previously banked cryopreserved human heart samples. These data support cardiac tissue banking as a strategy for improved access to CPCs for future clinical therapies.


Assuntos
Antígenos de Diferenciação/biossíntese , Separação Celular , Criopreservação , Regulação da Expressão Gênica , Miocárdio , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Células Cultivadas , Humanos , Fator 4 Semelhante a Kruppel , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo
18.
Expert Opin Drug Metab Toxicol ; 12(5): 575-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26982962

RESUMO

INTRODUCTION: Venous thromboembolism (VTE) is a common disorder. Heparin and vitamin K antagonists have been the standard treatment for VTE for over 50 years. The development of apixaban and other direct oral anticoagulants has greatly increased the range of anticoagulants available for the treatment of VTE. AREA COVERED: Studies on the chemistry, pharmacodynamics and pharmacokinetics of apixaban are reviewed. Its clinical efficacy and safety are discussed, with an emphasis on randomized controlled Phase III clinical trials on treatment of thrombosis. EXPERT OPINION: Apixaban is a safe and effective anticoagulant for VTE treatment. It has several attractive features: its oral activity, rapid action, limited drug- interaction profile and limited need for laboratory monitoring. An antidote may become available in the near future. Further studies of certain patient populations such as patients with cancers, elderly (aged 75 years and older) and those with severe renal and liver disease, are required as these patients have not yet been studied in sufficient numbers. As clinical trials included only selected patients, data from these studies may not reflect the 'real-life' patients in clinical practice. There is therefore an unmet need for large post-registration studies of unselected 'real-life' patients, such as registry studies, to validate the clinical trial findings.


Assuntos
Inibidores do Fator Xa/uso terapêutico , Pirazóis/uso terapêutico , Piridonas/uso terapêutico , Tromboembolia Venosa/tratamento farmacológico , Idoso , Anticoagulantes , Ensaios Clínicos Fase III como Assunto , Monitoramento de Medicamentos/métodos , Inibidores do Fator Xa/farmacocinética , Inibidores do Fator Xa/farmacologia , Fibrinolíticos/uso terapêutico , Heparina/uso terapêutico , Humanos , Pirazóis/farmacocinética , Pirazóis/farmacologia , Piridonas/farmacocinética , Piridonas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Trombose/tratamento farmacológico , Tromboembolia Venosa/patologia
19.
Stem Cell Reports ; 5(5): 753-762, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607951

RESUMO

Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) can improve the contractility of injured hearts.We hypothesized that mesodermal cardiovascular progenitors (hESC-CVPs), capable of generating vascular cells in addition to cardiomyocytes, would provide superior repair by contributing to multiple components of myocardium. We performed a head-to-head comparison of hESC-CMs and hESC-CVPs and compared these with the most commonly used clinical cell type, human bone marrow mononuclear cells (hBMMNCs). In a nude rat model of myocardial infarction, hESC-CMs and hESC-CVPs generated comparable grafts. Both similarly improved systolic function and ventricular dilation. Furthermore, only rare human vessels formed from hESC-CVPs. hBM-MNCs attenuated ventricular dilation and enhanced host vascularization without engrafting long-term or improving contractility. Thus, hESC-CMs and CVPs show similar efficacy for cardiac repair, and both are more efficient than hBM-MNCs. However, hESC-CVPs do not form larger grafts or more significant numbers of human vessels in the infarcted heart.


Assuntos
Células-Tronco Embrionárias/citologia , Células Progenitoras Endoteliais/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Animais , Células Cultivadas , Humanos , Masculino , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Função Ventricular
20.
Nature ; 510(7504): 273-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24776797

RESUMO

Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure by providing human cardiomyocytes to support heart regeneration. Studies of human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) in small-animal models have shown favourable effects of this treatment. However, it remains unknown whether clinical-scale hESC-CM transplantation is feasible, safe or can provide sufficient myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (more than one billion cells per batch) and cryopreserved with good viability. Using a non-human primate model of myocardial ischaemia followed by reperfusion, we show that cryopreservation and intra-myocardial delivery of one billion hESC-CMs generates extensive remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a 3-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small-animal models, non-fatal ventricular arrhythmias were observed in hESC-CM-engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome.


Assuntos
Células-Tronco Embrionárias/citologia , Coração , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Animais , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sobrevivência Celular , Vasos Coronários/fisiologia , Criopreservação , Modelos Animais de Doenças , Eletrocardiografia , Humanos , Macaca nemestrina , Masculino , Camundongos , Medicina Regenerativa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA