Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338948

RESUMO

Two-photon excitation microscopy (TPM) and multiphoton fluorescence microscopy (MPM) are advanced forms of intravital high-resolution functional microscopy techniques that allow for the imaging of dynamic molecular processes and resolve features of the biological tissues of interest. Due to the cornea's optical properties and the uniquely accessible position of the globe, it is possible to image cells and tissues longitudinally to investigate ocular surface physiology and disease. MPM can also be used for the in vitro investigation of biological processes and drug kinetics in ocular tissues. In corneal immunology, performed via the use of TPM, cells thought to be intraepithelial dendritic cells are found to resemble tissue-resident memory T cells, and reporter mice with labeled plasmacytoid dendritic cells are imaged to understand the protective antiviral defenses of the eye. In mice with limbal progenitor cells labeled by reporters, the kinetics and localization of corneal epithelial replenishment are evaluated to advance stem cell biology. In studies of the conjunctiva and sclera, the use of such imaging together with second harmonic generation allows for the delineation of matrix wound healing, especially following glaucoma surgery. In conclusion, these imaging models play a pivotal role in the progress of ocular surface science and translational research.


Assuntos
Córnea , Esclera , Animais , Camundongos , Microscopia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Túnica Conjuntiva
2.
J Immunol ; 212(4): 513-521, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315948

RESUMO

During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.


Assuntos
Aleitamento Materno , Lactação , Gravidez , Feminino , Humanos , Animais , Lactação/fisiologia , Macrófagos , Desmame , Útero , Glândulas Mamárias Animais/fisiologia
3.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
4.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245124

RESUMO

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Assuntos
Infecções Bacterianas , Sepse , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos
5.
Immunol Rev ; 306(1): 271-292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859448

RESUMO

As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.


Assuntos
Microscopia Intravital , Proteômica , Humanos , Microscopia Intravital/métodos , Macrófagos , Neutrófilos , Pele
6.
EMBO Rep ; 22(8): e52835, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34196465

RESUMO

Tissue-resident macrophages in white adipose tissue (WAT) dynamically adapt to the metabolic changes of their microenvironment that are often induced by excess energy intake. Currently, the exact contribution of these macrophages in obesity-driven WAT remodeling remains controversial. Here, using a transgenic CD169-DTR mouse strain, we provide new insights into the interplay between CD169+ adipose tissue macrophages (ATMs) and their surrounding WAT microenvironment. Using targeted in vivo ATM ablation followed by transcriptional and metabolic WAT profiling, we found that ATMs protect WAT from the excessive pathological remodeling that occurs during obesity. As obesity progresses, ATMs control not only vascular integrity, adipocyte function, and lipid and metabolic derangements but also extracellular matrix accumulation and resultant fibrosis in the WAT. The protective role of ATMs during obesity-driven WAT dysfunction supports the notion that ATMs represent friends, rather than foes, as has previously assumed.


Assuntos
Tecido Adiposo , Macrófagos , Tecido Adiposo Branco , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
7.
Immunity ; 51(1): 7-9, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315037

RESUMO

In this issue of Immunity, Deniset et al. (2019) reveal a reparative function for GATA6+ pericardial cavity macrophages following cardiac injury. Their findings call for reconsideration of surgical procedures that involve the removal of the pericardium.


Assuntos
Macrófagos , Pericárdio , Fibrose , Fator de Transcrição GATA6 , Humanos
8.
Front Immunol ; 10: 834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040854

RESUMO

Monocytes are a subset of cells that are categorized together with dendritic cells (DCs) and macrophages in the mononuclear phagocyte system (MPS). Despite sharing several phenotypic and functional characteristics with MPS cells, monocytes are unique cells with the ability to function as both precursor and effector cells in their own right. Before the development of hematopoietic stem cells (HSCs) in utero, monocytes are derived from erythro-myeloid precursors (EMPs) in the fetal liver that are important for populating the majority of tissue resident macrophages. After birth, monocytes arise from bone marrow (BM)-derived HSCs and are released into the circulation upon their maturation, where they survey peripheral tissues and maintain endothelial integrity. Upon sensing of microbial breaches or inflammatory stimuli, monocytes migrate into tissues where their plasticity allows them to differentiate into cells that resemble macrophages or DCs according to the environmental niche. Alternatively, they may also migrate into tissues in the absence of inflammation and remain in an undifferentiated state where they perform homeostatic roles. As monocytes are typically on the move, the availability of intravital imaging approaches has provided further insights into their trafficking patterns in distinct tissue compartments. In this review, we outline the importance of understanding their functional behavior in the context of tissue compartments, and how these studies may contribute towards improved vaccine and future therapeutic strategies.


Assuntos
Movimento Celular , Monócitos/fisiologia , Animais , Sistema Cardiovascular/citologia , Feto/citologia , Humanos , Leucopoese , Análise Espaço-Temporal
9.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466759

RESUMO

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Assuntos
Células da Medula Óssea/fisiologia , Neutrófilos/fisiologia , Animais , Células da Medula Óssea/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neutrófilos/imunologia
10.
Curr Opin Immunol ; 50: 94-101, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275187

RESUMO

Monocytes, dendritic cells (DCs) and macrophages have been classically categorized into the mononuclear phagocyte system (MPS) based on their similar functional and phenotypic characteristics. While an increasing amount of research has revealed substantial ontogenic and functional differences among these cells, the reasons behind their heterogeneity and strategic positioning in specific niches throughout the body are yet to be fully elucidated. In this review, we outline how recent advances in intravital imaging studies have dissected this phenomenon and have allowed us to appreciate how MPS cells exploit their regional niches to specialize and maximize their functional properties. Understanding their cellular behavior in each of their specialized microenvironment will eventually allow us to target specific cells and their behavioral patterns for improved vaccine and therapeutic purposes.


Assuntos
Monócitos/imunologia , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/fisiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Animais , Microambiente Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo
11.
J Exp Med ; 213(11): 2293-2314, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27811056

RESUMO

It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Monócitos/citologia , Receptores CXCR4/metabolismo , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ritmo Circadiano/genética , Endotoxinas/toxicidade , Feminino , Perfilação da Expressão Gênica , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
12.
J Invest Dermatol ; 136(2): 416-424, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26802238

RESUMO

Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Quimiocina CXCL2/metabolismo , Dermatite/imunologia , Doenças do Complexo Imune/imunologia , Neutrófilos/imunologia , Animais , Células Cultivadas , Quimiocina CXCL2/imunologia , Dermatite/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Doenças do Complexo Imune/fisiopatologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , RNA Mensageiro/análise
13.
J Leukoc Biol ; 97(3): 611-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25516753

RESUMO

Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major "checkpoint" for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1(gfp/+) mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1(gfp/+)Flt3L(-/-) mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1(gfp/+)Flt3L(-/-) reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1(gfp/+)-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo.


Assuntos
Células da Medula Óssea/citologia , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/deficiência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Monócitos/citologia , Receptores de Quimiocinas/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C , Contagem de Células , Forma Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Fenótipo , Receptores CCR2/metabolismo , Crânio/citologia
14.
J Invest Dermatol ; 134(3): 666-676, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24061165

RESUMO

Monocytes and their derived cells have critical roles in inflammation and immune defense. However, their function in skin diseases such as allergic contact dermatitis remains poorly defined. Using a model of contact hypersensitivity (CHS) toward 2,4-dinitrochlorobenzene, we show that Ly6C+ CD11b+ monocytic cells participate in the pathophysiology of CHS and their accumulation is regulated by effector CD8 T cells. These Ly6C+ CD11b+ monocytic cells are the primary contributors of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) and derive from Ly6C(hi)CCR2+ monocytes, as they were absent in non-inflamed skin and accumulate as a consequence of inflammation in a C-C chemokine receptor type 2 (CCR2)-dependent manner. Importantly, CCR2(-/-) mice, or wild-type mice depleted of monocytes via clodronate liposomes, display a marked decrease in TNF-α and iNOS expression accompanied by attenuated skin inflammation. Using transgenic mice and antibody depletion, we show that effector CD8 T cells regulate the accumulation of Ly6C+ CD11b+ monocytic cells through IL-17 and activate them for TNF-α and iNOS through IFN-γ. CD8 T cell-derived IFN-γ was also critical for the accumulation of the major histocompatibility complex II-expressing Ly6C+ CD11b+ subset, which expressed intermediate levels of CD11c and costimulatory molecules. Taken together, our findings provide further insight into the pathophysiology of allergic contact dermatitis by showing that CD8 T cells regulate the inflammatory cascade through TNF/iNOS-expressing Ly6C+ CD11b+ monocytic cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Monócitos/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Receptores CCR2/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Dermatite Alérgica de Contato/metabolismo , Feminino , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Blood ; 122(22): 3666-77, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24113869

RESUMO

Lymphangiogenesis is an important physiological response to inflammatory insult, acting to limit inflammation. Macrophages, dendritic cells, and lymphocytes are known to drive lymphangiogenesis. In this study, we show that neutrophils recruited to sites of inflammation can also coordinate lymphangiogenesis. In the absence of B cells, intranodal lymphangiogenesis induced during prolonged inflammation as a consequence of immunization is dependent on the accumulation of neutrophils. When neutrophils are depleted in wild-type mice developing skin inflammation in response to immunization or contact hypersensitization, lymphangiogenesis is decreased and local inflammation is increased. We demonstrate that neutrophils contribute to lymphangiogenesis primarily by modulating vascular endothelial growth factor (VEGF)-A bioavailability and bioactivity and, to a lesser extent, secreting VEGF-D. We further show that neutrophils increased VEGF-A bioavailability and bioactivity via the secretion of matrix metalloproteinases 9 and heparanase. Together, these findings uncover a novel function for neutrophils as organizers of lymphangiogenesis during inflammation.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Linfangiogênese/fisiologia , Neutrófilos/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Linfócitos B/imunologia , Dermatite/etiologia , Dermatite/metabolismo , Dermatite/patologia , Feminino , Glucuronidase/metabolismo , Inflamação/patologia , Linfangiogênese/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/imunologia , Neutrófilos/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
J Exp Med ; 210(11): 2321-36, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24081949

RESUMO

Blood neutrophil homeostasis is essential for successful host defense against invading pathogens. Circulating neutrophil counts are positively regulated by CXCR2 signaling and negatively regulated by the CXCR4-CXCL12 axis. In particular, G-CSF, a known CXCR2 signaler, and plerixafor, a CXCR4 antagonist, have both been shown to correct neutropenia in human patients. G-CSF directly induces neutrophil mobilization from the bone marrow (BM) into the blood, but the mechanisms underlying plerixafor-induced neutrophilia remain poorly defined. Using a combination of intravital multiphoton microscopy, genetically modified mice and novel in vivo homing assays, we demonstrate that G-CSF and plerixafor work through distinct mechanisms. In contrast to G-CSF, CXCR4 inhibition via plerixafor does not result in neutrophil mobilization from the BM. Instead, plerixafor augments the frequency of circulating neutrophils through their release from the marginated pool present in the lung, while simultaneously preventing neutrophil return to the BM. Our study demonstrates for the first time that drastic changes in blood neutrophils can originate from alternative reservoirs other than the BM, while implicating a role for CXCR4-CXCL12 interactions in regulating lung neutrophil margination. Collectively, our data provides valuable insights into the fundamental regulation of neutrophil homeostasis, which may lead to the development of improved treatment regimens for neutropenic patients.


Assuntos
Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Pulmão/citologia , Neutrófilos/citologia , Receptores CXCR4/antagonistas & inibidores , Animais , Benzilaminas , Medula Óssea/efeitos dos fármacos , Ciclamos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Contagem de Leucócitos , Macaca fascicularis , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Muramidase/metabolismo , Músculo Esquelético/citologia , Mutação/genética , Circulação Pulmonar , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/metabolismo
17.
Eur J Immunol ; 41(6): 1639-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21469104

RESUMO

TNF/iNOS-producing dendritic cells (Tip-DCs) have been shown to arise during inflammation and are important mediators of immune defense. However, it is still relatively unclear which cell types contribute to their differentiation. Here we show that CD8(+) T cells, through the interaction with DCs, can induce the rapid development of human monocytes into Tip-DCs that express high levels of TNF-α and iNOS. Tip-DCs exhibited T-cell priming ability, expressed high levels of MHC class II, upregulated co-stimulatory molecules CD40, CD80, CD86, toll-like receptors TLR2, TLR3, TLR4, chemokine receptors CCR1 and CX3CR1 and expressed the classical mature DC marker, CD83. Differentiation of monocytes into Tip-DCs was partially dependent on IFN-γ as blocking the IFN-γ receptor on monocytes resulted in a significant decrease in CD40 and CD83 expression and in TNF-α production. Importantly, these Tip-DCs were capable of further driving Th1 responses by priming naive CD4(+) T cells for proliferation and IFN-γ production and this was partially dependent on Tip-DC production of TNF-α and NO. Our study hence identifies a role for CD8(+) T cells in orchestrating Th1-mediating signals through the differentiation of monocytes into Th1-inducing Tip-DCs.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Interferon gama/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos Bloqueadores/farmacologia , Antígenos CD/biossíntese , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Receptor 1 de Quimiocina CX3C , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Humanos , Interferon gama/imunologia , Ativação Linfocitária/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/imunologia , Receptores CCR1/biossíntese , Receptores de Quimiocinas/biossíntese , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Receptores Toll-Like/biossíntese , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA