Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Singapore Med J ; 65(4): 204-210, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650058

RESUMO

ABSTRACT: Climate change is an existential threat to humanity. While the healthcare sector must manage the health-related consequences of climate change, it is a significant contributor to greenhouse gas emissions, responsible for up to 4.6% of global emission, aggravating global warming. Within the hospital environment, the three largest contributors to greenhouse gas emissions are the operating theatre, intensive care unit and gastrointestinal endoscopy. Knowledge of the health-related burden of climate change and the potential transformative health benefits of climate action is important to all health professionals, as they play crucial roles in effecting change. This article summarises the available literature on the impact of healthcare on climate change and efforts in mitigation, focusing on the intrinsic differences and similarities across the operating theatre complex, intensive care unit and gastrointestinal endoscopy unit. It also discusses strategies to reduce carbon footprint.


Assuntos
Pegada de Carbono , Mudança Climática , Humanos , Gases de Efeito Estufa , Unidades de Terapia Intensiva , Atenção à Saúde , Salas Cirúrgicas , Endoscopia Gastrointestinal , Aquecimento Global , Conservação dos Recursos Naturais , Efeito Estufa
2.
Sci Rep ; 14(1): 1085, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212347

RESUMO

The genitourinary symptom of menopause (GSM) affects up to 65% of women, resulting in symptoms such as vulvovaginal dryness, discomfort, and dysuria, which significantly impacts quality of life. The current assessment methods rely on subjective questionnaires that can be influenced by individual differences, as well as invasive measurements that are time-consuming and not easily accessible. In this study, we explore the potential of a non-invasive and objective assessment tool called diffuse reflectance spectroscopy and imaging (DRSI) to evaluate tissue chromophores, including water, lipid, oxyhemoglobin, and deoxyhemoglobin. These measurements provide information about moisture content, lipid levels, oxygen saturation, and blood fraction, which can serve as surrogate markers for genital estrogen levels. Our findings reveal distinct differences in these chromophores among pre, peri, and postmenopausal subjects. By using lipid and blood fraction tissue chromophores in a K-Nearest Neighbour classifier model, we achieved a prediction accuracy of 65% compared to vaginal maturation index (VMI) that is clinically used to assess estrogen-related hormonal changes. When age was included as the third feature, the accuracy increased to 78%. We believe that by refining the study protocol and configuring the fiber probe to examine tissue chromophores both in the superficial vulva skin for epidermal water content and the deeper layers, DRSI has the potential to provide objective diagnosis and aid in monitoring the treatment outcome of GSM.


Assuntos
Menopausa , Qualidade de Vida , Feminino , Humanos , Projetos Piloto , Vagina/patologia , Análise Espectral , Estrogênios , Água , Lipídeos , Atrofia/patologia
3.
Clin Chem ; 69(8): 881-889, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477572

RESUMO

BACKGROUND: Current strategies for preimplantation genetic testing for aneuploidy or structural rearrangements (PGT-A/SR) rely mainly on next-generation sequencing (NGS) and microarray platforms, which are robust but require expensive instrumentation. We explored the suitability of third-generation single-molecule sequencing as a PGT-A/SR screening platform for both aneuploidy and segmental imbalance. METHODS: Single-cell and multicell replicates from aneuploid or segmentally unbalanced cell lines (n = 208) were SurePlex-amplified, randomized, and subjected to (a) Nanopore-based single-molecule sequencing (Oxford Nanopore Technologies) and (b) NGS using a leading commercial PGT-A solution (Illumina VeriSeq PGS). Archival SurePlex-amplified trophectoderm biopsy samples (n = 96) previously analyzed using the commercial kit were blinded and reanalyzed using Nanopore. RESULTS: Nanopore-based PGT-A identified the specific aberration in 95.45% (84/88) and 97.78% (88/90) of single-/multicells with an aneuploidy or segmental imbalance (10-30.5 Mb), respectively. Comparison against the commercial kit's results revealed concordances of 98.86% (87/88) and 98.89% (89/90) for the aneuploid and segmentally unbalanced (10-30.5 Mb aberration) samples, respectively. Detection sensitivity for smaller segmental imbalances (5-5.8 Mb aberration, n = 30) decreased markedly on both platforms. Nanopore-based PGT-A reanalysis of trophectoderm biopsy samples was 97.92% (94/96) concordant with the commercial kit results. CONCLUSION: Up to 24 SurePlex-amplified single-cell, multicell, or trophectoderm samples could be sequenced in a single MinION flow-cell for subsequent preimplantation genetic testing for aneuploidy or structural rearrangements (PGT-A/SR) analysis, with results obtainable in ≤3 days and at per-sample costs that are competitive with commercial offerings. Nanopore's third-generation single-molecule sequencing represents a viable alternative to current commercial NGS-based PGT-A solutions for aneuploidy and segmental imbalance (≥10 Mb) screening of single-/multicell or trophectoderm biopsy samples.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Aneuploidia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Rearranjo Gênico
4.
Stem Cell Res Ther ; 14(1): 136, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226255

RESUMO

BACKGROUND: Intrauterine hematopoietic stem cell transplantation (IUT), potentially curative in congenital haematological disease, is often inhibited by deleterious immune responses to donor cells resulting in subtherapeutic donor cell chimerism (DCC). Microchimerism of maternal immune cells (MMc) trafficked into transplanted recipients across the placenta may directly influence donor-specific alloresponsiveness, limiting DCC. We hypothesized that dendritic cells (DC) among trafficked MMc influence the development of tolerogenic or immunogenic responses towards donor cells, and investigated if maternal DC-depletion reduced recipient alloresponsiveness and enhanced DCC. METHODS: Using transgenic CD11c.DTR (C57BL/6) female mice enabled transient maternal DC-depletion with a single dose of diphtheria toxin (DT). CD11c.DTR females and BALB/c males were cross-mated, producing hybrid pups. IUT was performed at E14 following maternal DT administration 24 h prior. Bone marrow-derived mononuclear cells were transplanted, obtained from semi-allogenic BALB/c (paternal-derived; pIUT), C57BL/6 (maternal-derived; mIUT), or fully allogenic (aIUT) C3H donor mice. Recipient F1 pups were analyzed for DCC, while maternal and IUT-recipient immune cell profile and reactivity were examined via mixed lymphocyte reactivity functional assays. T- and B-cell receptor repertoire diversity in maternal and recipient cells were examined following donor cell exposure. RESULTS: DCC was highest and MMc was lowest following pIUT. In contrast, aIUT recipients had the lowest DCC and the highest MMc. In groups that were not DC-depleted, maternal cells trafficked post-IUT displayed reduced TCR & BCR clonotype diversity, while clonotype diversity was restored when dams were DC-depleted. Additionally, recipients displayed increased expression of regulatory T-cells and immune-inhibitory proteins, with reduced proinflammatory cytokine and donor-specific antibody production. DC-depletion did not impact initial donor chimerism. Postnatal transplantation without immunosuppression of paternal donor cells did not increase DCC in pIUT recipients; however there were no donor-specific antibody production or immune cell changes. CONCLUSIONS: Though maternal DC depletion did not improve DCC, we show for the first time that MMc influences donor-specific alloresponsiveness, possibly by expanding alloreactive clonotypes, and depleting maternal DC promotes and maintains acquired tolerance to donor cells independent of DCC, presenting a novel approach to enhancing donor cell tolerance following IUT. This may have value when planning repeat HSC transplantations to treat haemoglobinopathies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Feminino , Masculino , Gravidez , Animais , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Toxina Diftérica , Células Dendríticas , Aloenxertos
5.
Prenat Diagn ; 43(5): 674-686, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965009

RESUMO

Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.


Assuntos
Edição de Genes , Técnicas de Transferência de Genes , Humanos , Vetores Genéticos , Terapia Genética , Feto
6.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012335

RESUMO

Endometrial stromal cells play an important role in reproductive success, especially in implantation and placentation. Although Mesenchymal stem cells (MSCs) have been studied to assess decidualization disorders in preeclampsia (PE), their role during trophoblast invasion remains unclear. This study aims to determine: (i) whether MSCs isolated from menstrual fluid (MenSCs) from nulliparous, multiparous, and women with a previous history of preeclampsia exhibited different patterns of proliferation and migration and (ii) whether reproductive history (i.e., prior pregnancy or prior history of PE) was able to produce changes in MenSCs, thus altering trophoblast invasion capacity. MenSCs were collected from nulliparous and multiparous women without a history of PE and from non-pregnant women with a history of PE. Proliferation and migration assays were performed on MenSCs with sulforhodamine B and transwell assays, respectively. Trophoblast invasion was analyzed by culturing HTR-8/SVneo trophospheres on a matrigel overlying MenSCs for 72 h at 5% O2, simulating a 3D implantation model. A previous history of pregnancy or PE did not impact the proliferative capacity or migratory behavior of MenSCs. Following exposure to physiological endometrial conditions, MenSCs demonstrated upregulated expression of IGFBP-1 and LIF mRNA, decidualization and window of implantation markers, respectively. The mRNA expression of VIM, NANOG, and SOX2 was upregulated upon trophosphere formation. Relative to co-culture with multiparous MenSCs, co-culture with PE-MenSCs was associated with reduced trophoblast invasion. The findings of this study suggest a potential role for communication between maternal MenSCs and invading trophoblast cells during the implantation process that could be implicated in the etiology of PE.


Assuntos
Células-Tronco Mesenquimais , Pré-Eclâmpsia , Movimento Celular/genética , Proliferação de Células , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo
7.
Singapore Med J ; 63(5): 274-282, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36043312

RESUMO

INTRODUCTION: Selective fetoscopic laser photocoagulation (SFLP) for twin-to-twin transfusion syndrome (TTTS) is challenging for new surgeons at the start of their learning curve. We described an approach utilising telementoring and team-based training to facilitate rapid attainment of the skills required for safe and efficient practice with a limited caseload. METHODS: We conducted a prospective observational study of SFLP performed by the novice primary surgical team in three stages: under direct on-site supervision from an expert mentor (Group 1), with remote tele-guidance from that mentor (Group 2) and independently (Group 3), at an academic tertiary hospital in Singapore. The primary team undertook regular training on high-fidelity tissue models to accelerate skills acquisition and complement the surgical performance. RESULTS: 9 patients diagnosed with Stage 2 TTTS were assessed for procedural characteristics, surgical outcomes and perinatal survival following SFLP. There were no significant differences in operative duration, anastomoses ablated, gestational age or birth weight at delivery. The complications observed were: recurrent TTTS (22.2% of pregnancies), twin anaemia polycythaemia sequence (33.3%), preterm prelabour membrane rupture (22.2%) and delivery at < 32 weeks (44.4%). ≥ 1 twin was live-born in 88.9% of cases, while postnatal survival to six months of ≥ 1 twin occurred in 77.8% of cases. CONCLUSION: Systematic mentoring and specialised skills training are useful in aiding new surgeons to negotiate the steep learning curve and achieve good outcomes at the start of a new practice, particularly in the setting of low patient numbers. This is best paired with dedicated model training to achieve and maintain surgical dexterity for this complex procedure.


Assuntos
Transfusão Feto-Fetal , Tutoria , Feminino , Transfusão Feto-Fetal/cirurgia , Fetoscopia/métodos , Idade Gestacional , Humanos , Recém-Nascido , Fotocoagulação a Laser/métodos , Lasers , Curva de Aprendizado , Mentores , Gravidez , Gravidez de Gêmeos
8.
Sci Rep ; 12(1): 12459, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864143

RESUMO

Raman spectroscopy (RS) is a widely used non-destructive technique for biosensing applications because of its ability to detect unique 'fingerprint' spectra of biomolecules from the vibrational bands. To detect these weak fingerprint spectra, a complex detection system consisting of expensive detectors and optical components are needed. As a result, surface enhanced Raman spectroscopy (SERS) method were used to increase the Raman signal multifold beyond 1012 times. However, complexity of the entire Raman detection system can be greatly reduced if a short wavelength region/unique single spectral band can distinctly identify the investigating analyte, thereby reducing the need of multiple optical components to capture the entire frequency range of Raman spectra. Here we propose the development of a rapid, single peak Raman technique for the detection of epithelial ovarian cancers (EOC)s through haptoglobin (Hp), a prognostic biomarker. Hp concentration in ovarian cyst fluid (OCF) can be detected and quantified using Raman spectroscopy-based in vitro diagnostic assay. The uniqueness of the Raman assay is that, only in the presence of the analyte Hp, the assay reagent undergoes a biochemical reaction that results in product formation. The unique Raman signature of the assay output falls within the wavenumber region 1500-1700 cm-1 and can be detected using our single peak Raman system. The diagnostic performance of our Raman system had 100.0% sensitivity, 85.0% specificity, 100.0% negative predictive value and 84.2% positive predictive value when compared to gold standard paraffin histology in a proof-of-concept study on 36 clinical OCF samples. When compared to blood-based serum cancer antigen 125 (CA125) levels, the Raman system-based assay had higher diagnostic accuracy when compared to CA125, especially in early-stage EOCs.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Antígeno Ca-125 , Carcinoma Epitelial do Ovário , Feminino , Haptoglobinas , Humanos , Neoplasias Ovarianas/diagnóstico , Análise Espectral Raman/métodos
9.
Genome Biol ; 23(1): 121, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637517

RESUMO

BACKGROUND: The plasticity along the epithelial-mesenchymal transition (EMT) spectrum has been shown to be regulated by various epigenetic repertoires. Emerging evidence of local chromatin conformation changes suggests that regulation of EMT may occur at a higher order of three-dimensional genome level. RESULTS: We perform Hi-C analysis and combine ChIP-seq data across cancer cell lines representing different EMT states. We demonstrate that the epithelial and mesenchymal genes are regulated distinctively. We find that EMT genes are regulated within their topologically associated domains (TADs), with only a subset of mesenchymal genes being influenced by A/B compartment switches, indicating topological remodeling is required in the transcriptional regulation of these genes. At the TAD level, epithelial and mesenchymal genes are associated with different regulatory trajectories. The epithelial gene-residing TADs are enriched with H3K27me3 marks in the mesenchymal-like states. The mesenchymal gene-residing TADs, which do not show enrichment of H3K27me3 in epithelial-like states, exhibit increased interaction frequencies with regulatory elements in the mesenchymal-like states. CONCLUSIONS: We propose a novel workflow coupling immunofluorescence and dielectrophoresis to unravel EMT heterogeneity at single-cell resolution. The predicted three-dimensional structures of chromosome 10, harboring Vimentin, identify cell clusters of different states. Our results pioneer a novel avenue to decipher the complexities underlying the regulation of EMT and may infer the barriers of plasticity in the 3D genome context.


Assuntos
Transição Epitelial-Mesenquimal , Histonas , Cromatina , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Genoma , Histonas/metabolismo
10.
Hypertension ; 79(2): 314-322, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689595

RESUMO

The study aimed to investigate whether serum sFlt-1 (soluble fms-like tyrosine kinase-1) at 11-13 weeks' gestation in pregnancies that subsequently developed preeclampsia was different from those without preeclampsia and compare screening performance of the International Prediction of Pregnancy Complications (IPPIC) reported models, which include various combinations of maternal factors, systolic blood pressure, diastolic blood pressure, PlGF (placental growth factor) and sFlt-1 and the competing risk (CR) models, which include various combinations of maternal factors, mean arterial pressure (MAP) and PlGF for predicting any-onset, early-onset, and late-onset preeclampsia. This was a prospective multicenter study in 7877 singleton pregnancies. The differences of the predictive performance between the IPPIC and CR models were compared. There were 141 women (1.79%) who developed preeclampsia, including 13 cases (0.17%) of early-onset preeclampsia and 128 cases (1.62%) of late-onset preeclampsia. In pregnancies that developed preeclampsia compared to unaffected pregnancies, median serum sFlt-1 levels and its MoMs were not significantly different (p>0.05). There was no significant association between gestational age at delivery and log10 sFlt-1 and log10 sFlt-1 MoM (p>0.05). The areas under the curve of CR models were significantly higher than the IPPIC models for the prediction of any-onset and late-onset preeclampsia but not for early-onset preeclampsia. In conclusion, there are no significant differences in the maternal serum sFlt-1 levels at 11-13 weeks' gestation between women who subsequently develop preeclampsia and those who do not. Moreover, the CR models for the prediction of any-onset and late-onset preeclampsia perform better than the IPPIC reported model.


Assuntos
Pressão Sanguínea/fisiologia , Pré-Eclâmpsia/diagnóstico , Primeiro Trimestre da Gravidez/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Adulto , Biomarcadores , Feminino , Humanos , Fator de Crescimento Placentário/sangue , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/fisiopatologia , Gravidez , Estudos Prospectivos
11.
FASEB J ; 35(3): e21413, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570785

RESUMO

Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.


Assuntos
Transplante de Medula Óssea , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante Homólogo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea/métodos , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Quimeras de Transplante/imunologia , Transplante Homólogo/métodos
12.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440639

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the folate metabolic pathway, and its loss of function through polymorphisms is often associated with human conditions, including cancer, congenital heart disease, and Down syndrome. MTHFR is also required in the maintenance of heterochromatin, a crucial determinant of genomic stability and precise chromosomal segregation. Here, we characterize the function of a fission yeast gene met11+, which encodes a protein that is highly homologous to the mammalian MTHFR. We show that, although met11+ is not essential for viability, its disruption increases chromosome missegregation and destabilizes constitutive heterochromatic regions at pericentromeric, sub-telomeric and ribosomal DNA (rDNA) loci. Transcriptional silencing at these sites were disrupted, which is accompanied by the reduction in enrichment of histone H3 lysine 9 dimethylation (H3K9me2) and binding of the heterochromatin protein 1 (HP1)-like Swi6. The met11 null mutant also dominantly disrupts meiotic fidelity, as displayed by reduced sporulation efficiency and defects in proper partitioning of the genetic material during meiosis. Interestingly, the faithful execution of these meiotic processes is synergistically ensured by cooperation among Met11, Rec8, a meiosis-specific cohesin protein, and the shugoshin protein Sgo1, which protects Rec8 from untimely cleavage. Overall, our results suggest a key role for Met11 in maintaining pericentromeric heterochromatin for precise genetic inheritance during mitosis and meiosis.


Assuntos
Segregação de Cromossomos , Meiose , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Mitose , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alelos , Biomarcadores , Genótipo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Meiose/genética , Mitose/genética , Mutação , Fenótipo
14.
Front Mol Biosci ; 7: 213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974388

RESUMO

Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.

15.
Fetal Diagn Ther ; 47(9): 689-698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32375144

RESUMO

The COVID-19 pandemic has stressed patients and healthcare givers alike and challenged our practice of antenatal care, including fetal diagnosis and therapy. This document aims to review relevant recent information to allow us to optimize prenatal care delivery. We discuss potential modifications to obstetric management and fetal procedures in SARS-CoV2-negative and SARS-CoV2-positive patients with fetal anomalies or disorders. Most fetal therapies are time sensitive and cannot be delayed. If personnel and resources are available, we should continue to offer procedures of proven benefit, acknowledging any fetal and maternal risks, including those to health care workers. There is, to date, minimal, unconfirmed evidence of spontaneous vertical transmission, though it may theoretically be increased with some procedures. Knowing a mother's preoperative SARS-CoV-2 status would enable us to avoid or defer certain procedures while she is contagious and to protect health care workers appropriately. Some fetal conditions may alternatively be managed neonatally. Counseling regarding fetal interventions which have a possibility of additional intra- or postoperative morbidity must be performed in the context of local resource availability. Procedures of unproven benefit should not be offered. We encourage participation in registries and trials that may help us to understand the impact of COVID-19 on pregnant women, their fetuses, and neonates.


Assuntos
Betacoronavirus/patogenicidade , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/prevenção & controle , Controle de Infecções/normas , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Serviços de Saúde Materna/normas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Teste para COVID-19 , Consenso , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Recém-Nascido , Saúde Ocupacional/normas , Segurança do Paciente/normas , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Gravidez , Medição de Risco , Fatores de Risco , SARS-CoV-2
16.
Stem Cell Res Ther ; 11(1): 78, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085797

RESUMO

BACKGROUND: Keloid formation occurs in Caucasian, African, and Asian populations and is a severe psychosocial burden on patients. There is no permanent treatment for this problem as its pathogenesis is not properly understood. Furthermore, differences in keloid behavior between ethnic groups are not known. It has been hypothesized that keloids behave like benign tumors because of their uncontrolled growth. The present study evaluated the tumoricidal properties of human Wharton's jelly stem cell-conditioned medium (hWJSC-CM) on fresh Asian keloid cells (AKCs). METHODS: Human Wharton's jelly stem cells (hWJSCs) and AKCs were isolated based on our previous methods. hWJSCs and human skin fibroblasts (HSF) (controls) were used to collect hWJSC-CM and HSF-conditioned medium (HSF-CM). AKCs were treated with hWJSC-CM and HSF-CM in vitro and in vivo in a human keloid xenograft SCID mouse model. The inhibitory effect of hWJSC-CM on AKCs was tested in vitro using various assays and in vivo for attenuation/abrogation of AKC tumors created in a xenograft mouse model. RESULTS: qRT-PCR analysis showed that the genes FN1, MMP1, and VCAN were significantly upregulated in AKCs and ANXA1, ASPN, IGFBP7, LGALS1, and PTN downregulated. AKCs exposed to hWJSC-CM in vitro showed significant decreases in cell viability and proliferation, increases in Annexin V-FITC+ cell numbers, interruptions of the cell cycle at Sub-G1 and G2/M phases, altered CD marker expression, downregulated anti-apoptotic-related genes, and upregulated pro-apoptotic and autophagy-related genes compared to controls. When AKCs were administered together with hWJSC-CM into immunodeficient mice there were no keloid tumors formed in 7 mice (n = 10) compared to the untreated control mice. When hWJSC-CM was injected directly into keloid tumors created in mice there were significant reductions in keloid tumor volumes and weights in 30 days. CONCLUSIONS: hWJSC-CM inhibited the growth of AKCs in vitro and in xenograft mice, and it may be a potential novel treatment for keloids in the human. The specific molecule(s) in hWJSC-CM that induce the anti-keloid effect need to be identified, characterized, and tested separately in larger preclinical and clinical studies.


Assuntos
Queloide/metabolismo , Queloide/terapia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Meios de Cultivo Condicionados , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos SCID , Cordão Umbilical/citologia
17.
J Biophotonics ; 13(3): e201960120, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31814313

RESUMO

Conventionally Surface-enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano-roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.5% and 4.6%, respectively, which makes it more reliable than any existing SERS sensor platforms. In addition, our platform could improve the detection sensitivity owing to the increased interaction area between the guided light and the analyte, which is incorporated into the holes that runs along the length of the PCF. Numerical calculation established the significance of the interplay between light coupling efficiency and evanescent field distribution, which could eventually determine the sensitivity and reliability of the developed SERS active-PCF sensor. As a proof of concept, using this sensor, we demonstrated the detection of haptoglobin, a biomarker for ovarian cancer, contained within the ovarian cyst fluid, which facilitated in differentiating the stages of cancer. We envision that with necessary refinements, this platform could potentially be translated as a next-generation highly sensitive SERS-active opto-fluidic biopsy needle for the detection of biomarkers in body fluids.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Biomarcadores Tumorais , Líquido Cístico , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Reprodutibilidade dos Testes , Análise Espectral Raman
18.
Sci Rep ; 9(1): 15446, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659188

RESUMO

Development of cell transplantation for treating liver cirrhosis hinges critically on the availability of animal models for studying human stem cell transplantation. We report an immune-permissive murine model of liver cirrhosis with full clinical correlates of decompensated liver disease, and allows testing efficacy of stem cell transplantation. Liver cirrhosis was induced in Nod-scid gamma(NSG) mice with oral thioacetamide(TA) and compared to controls over 12 months. 4 month TA treated cirrhotic mice were then transplanted intrasplenically with 2million human fetal liver progenitor cells(HFH) and compared with cirrhotic controls 2 months after transplantation. NSG-TA mice developed shrunken and nodular livers with histological evidence of fibrosis as compared to controls. This was associated with evidence of worsening decompensated liver disease, with jaundice, hypoalbuminemia, coagulopathy, and encephalopathy in NSG-TA mice. Transplantation of HFH resulted in improvement in both fibrosis and markers of decompensated liver disease. We have demonstrated that NSG-TA mice can recapitulate the full clinical picture of structural and functional cirrhosis, both of which can be improved by transplantation of human fetal liver cells. This model serves as a valuable tool for validation of in vivo liver stem cell transplantation and opens up opportunities for studying the mechanism how stem cells reverse fibrosis.


Assuntos
Feto , Cirrose Hepática , Fígado , Transplante de Células-Tronco , Células-Tronco , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Células-Tronco/metabolismo , Células-Tronco/patologia
19.
BMJ Case Rep ; 12(4)2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30988104

RESUMO

A woman's chances of having a child with Down syndrome increases with age. By age 40, the risk of conceiving a child with Down syndrome is about 1 in 100. We report a rare case of dizygotic dichorionic diamniotic twin pregnancy conceived via in vitro fertilisation, with both twins having trisomy 21. Both fetuses were independently detected to be at high risk of autosomal trisomy, initially via first-trimester screening and subsequently via invasive definitive diagnostic tests (ie, chorionic villus sampling and amniocentesis).Diagnosis of trisomy 21 has to be made via initial non-invasive prenatal screening, followed by further rigorous and accurate invasive pregnancy testing for confirmation. The gravity of the results necessitates high detection rates and high specificity of prenatal screening tests. Management of the patient must be multidisciplinary and supportive in nature, involving extensive and non-directive pregnancy counselling and management, genetic counselling and management of psychological distress.


Assuntos
Aborto Induzido , Síndrome de Down/diagnóstico , Transferência Embrionária , Fertilização in vitro , Primeiro Trimestre da Gravidez , Gêmeos/genética , Adulto , Gonadotropina Coriônica Humana Subunidade beta , Feminino , Aconselhamento Genético , Humanos , Masculino , Idade Materna , Gravidez , Primeiro Trimestre da Gravidez/genética , Gravidez de Gêmeos , Diagnóstico Pré-Natal
20.
Cancer Manag Res ; 11: 1115-1124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774440

RESUMO

PURPOSE: To evaluate haptoglobin (Hp) in ovarian cyst fluid as a diagnostic biomarker for epithelial ovarian cancers (EOCs) using surface-enhanced Raman spectroscopy (SERS)-based in vitro diagnostic assay for use in an intraoperative setting. METHODS: SERS-based method was used to detect and quantify Hp in archived ovarian cyst fluids collected from suspicious ovarian cysts and differentiate benign tumors from EOCs. The diagnostic performance of SERS-based assay was verified against the histopathology conclusions and compared with the results of CA125 test and frozen sections. RESULTS: Hp concentration present in the clinical cyst fluid measured by SERS was normalized to 3.3 mg/mL of standard Hp. Normalized mean values for patients with benign cysts were 0.65 (n=57) and malignant cysts were 1.85 (n=54), demonstrating a significantly (P<0.01) higher Hp in malignant samples. Verified against histology, Hp measurements using SERS had a sensitivity of 94% and specificity of 91%. Receiver operating characteristic curve analysis of SERS-based Hp measurements resulted in area under the curve of 0.966±0.03, establishing the robustness of the method. CA125 test on the same set of patients had a sensitivity of 85% and specificity of 90%, while frozen section analysis on 65 samples had 100% sensitivity and specificity. CONCLUSION: With a total execution time of <10 minutes and consistent performance across different stages of cancer, the SERS-based Hp detection assay can serve as a promising intra-operative EOC diagnostic test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA