Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(9): 110711, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39262808

RESUMO

Cordycepin, a natural derivative of adenosine from Cordyceps militaris, can inhibit the replication of the dengue virus (DENV). Here, we investigated its antiviral and anti-inflammatory effects in DENV infected cells. Cordycepin significantly inhibited DENV-2 infection, virion production, and viral protein synthesis. It also reduced DENV-induced cytokine/chemokine production, including RANTES, IP-10, IL-6, and TNF-α. Mechanistically, cordycepin targeted the DENV NS5 protein, suppressing RANTES expression and hindering viral replication. Additionally, it inhibited the NF-κB pathway, leading to reduced nuclear translocation and signaling deactivation. PCR array analysis revealed cordycepin's suppression of 46 genes associated with DENV-induced inflammation. These findings highlight cordycepin's dual potential as an antiviral and anti-inflammatory agent against DENV, making it as a promising candidate for dengue treatment, targeting both viral and host factors.

2.
Heliyon ; 10(17): e36654, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263056

RESUMO

Our study employed molecular dynamics (MD) simulations to assess the binding affinity between short peptides derived from the tumor-associated antigen glypican 3 (GPC3) and the major histocompatibility complex (MHC) molecule HLA-A*11:01 in hepatocellular carcinoma. We aimed to improve the reliability of in silico predictions of peptide-MHC interactions, which are crucial for developing targeted cancer therapies. We used five algorithms to discover four peptides (TTDHLKFSK, VINTTDHLK, KLIMTQVSK, and STIHDSIQY), demonstrating the substantial potential for HLA-A11:01 presentation. The Anchored Peptide-MHC Ensemble Generator (APE-Gen) was used to create the initial structure of the peptide-MHC complex. This was followed by a 200 ns molecular dynamics (MD) simulation using AMBER22, which verified the precise positioning of the peptides in the binding groove of HLA-A*11:01, specifically at the A and F pockets. Notably, the 2nd residue, which serves as a critical anchor within the 2nd pocket, played a pivotal role in stabilising the binding interactions.VINTTDHLK (ΔG SIE = -14.46 ± 0.53 kcal/mol and ΔG MM/GBSA = -30.79 ± 0.49 kcal/mol) and STIHDSIQY (ΔG SIE and ΔG MM/GBSA = -14.55 ± 0.16 and -23.21 ± 2.23 kcal/mol) exhibited the most effective binding potential among the examined peptides, as indicated by both their binding free energies and its binding affinity on the T2 cell line (VINTTDHLK: IC50 = 0.45 nM; STIHDSIQY: IC50 = 0.35 nM). The remarkable concordance between in silico and in vitro binding affinity results was of particular significance, indicating that MD simulation is a potent instrument capable of bolstering confidence in in silico peptide predictions. By employing MD simulation as a method, our study provides a promising avenue for improving the prediction of potential peptide-MHC interactions, thereby facilitating the development of more effective and targeted cancer therapies.

3.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683232

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Linfócitos T , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Animais
4.
Int Immunopharmacol ; 113(Pt B): 109442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435066

RESUMO

Adoptive T cell therapy using second-generation anti-CD19 chimeric antigen receptor T cells (anti-CD19-CAR2-T) induced complete remission in many heavily pretreated patients with B cell acute lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma (DLBCL). However, poor clinical efficacy was observed in treating aggressive B cell lymphomas (BCL). The limited T cell function was reported by programmed cell death protein 1 ligand (PD-L1) expressed on BCL cells bound to the PD-1 receptor on T cells. To overcome this problem, we generated anti-CD19-CAR4-T cells secreting anti-PD-L1 single-chain variable fragment (scFv), namely anti-CD19-CAR5-T cells, and evaluated their functions in vitro. Both anti-CD19-CAR-T cells contain an anti-CD19 scFv derived from a monoclonal antibody, FMC63, linked to CD28/4-1BB/CD27/CD3ζ. The secreting anti-PD-L1 scFv is derived from atezolizumab. Our results showed that secreted anti-PD-L1 scFv could bind to PD-L1 and block the binding of anti-PD-L1 monoclonal antibodies on PD-L1high tumor cells. Anti-CD19-CAR4-T and anti-CD19-CAR5-T cells efficiently killed CD19+ target tumor cells in two-dimensional (2D) and three-dimensional (3D) co-culture systems. However, anti-CD19-CAR5-T cells demonstrated superior proliferative ability. Interestingly, at a low effector (E) to target (T) ratio of 0.5:1, anti-CD19-CAR5-T cells showed higher cytotoxicity against CD19+/PD-L1high cells compared to that of anti-CD19-CAR4-T cells. The cytotoxicity of anti-CD19-CAR4-T cells against CD19+/PD-L1high could be restored by adding anti-PD-L1 scFv. Our findings demonstrate the combination antitumor efficiency of anti-CD19-CAR4-T cells and anti-PD-L1 scFv against CD19+/PD-L1high tumors. As such, anti-CD19-CAR5-T cells should be further investigated in vivo antitumor efficiency and clinical trials as a treatment for aggressive B cell lymphoma.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/uso terapêutico , Ligantes , Linfócitos T , Antígenos CD19 , Proteínas Adaptadoras de Transdução de Sinal
5.
Sci Rep ; 12(1): 16088, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168031

RESUMO

Severe dengue virus (DENV) infection results from viral replication and dysregulated host immune response, which trigger massive cytokine production/cytokine storm. The result is severe vascular leakage, hemorrhagic diathesis, and organ dysfunction. Subsequent to previously proposing that an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine storm, we discovered that α-mangostin (α-MG) from the pericarp of the mangosteen fruit could inhibit both DENV infection and cytokine/chemokine production. In this study, we investigated the molecular mechanisms underlying the antiviral and anti-inflammatory effects of α-MG. Time-of-drug-addition and time-of-drug-elimination studies suggested that α-MG inhibits the replication step of the DENV life cycle. α-MG inhibited polymerization activity of RNA-dependent RNA polymerase (RdRp) with IC50 values of 16.50 µM and significantly reduced viral RNA and protein syntheses, and virion production. Antiviral and cytokine/chemokine gene expression profiles of α-MG-treated DENV-2-infected cells were investigated by polymerase chain reaction array. α-MG suppressed the expression of 37 antiviral and cytokine/chemokine genes that relate to the NF-κB signaling pathway. Immunofluorescence and immunoblot analyses revealed that α-MG inhibits NF-κB nuclear translocation in DENV-2-infected cells in association with reduced RANTES, IP-10, TNF-α, and IL-6 production. These results suggest α-MG as a potential treatment for DENV infection.


Assuntos
Vírus da Dengue , Dengue , Viroses , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Quimiocina CCL5 , Quimiocina CXCL10 , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Humanos , Inflamação/tratamento farmacológico , Interleucina-6/farmacologia , NF-kappa B/metabolismo , RNA Viral , RNA Polimerase Dependente de RNA , Fator de Necrose Tumoral alfa/metabolismo , Viroses/tratamento farmacológico , Replicação Viral , Xantonas
6.
PLoS One ; 17(3): e0265773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312724

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.


Assuntos
Anticorpos Biespecíficos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Anticorpos Biespecíficos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Técnicas de Cocultura , Humanos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA