Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1432616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170685

RESUMO

Objective: In addition to the well-established advantage that strengthened pelvic musculature increases urethral resistance in stress urinary incontinence (SUI) patients, intra-vaginal electrical stimulation (iVES) has been shown in preclinical studies to improve bladder capacity via the pudendal-hypogastric mechanism. This study investigated whether iVES also benefits bladder storage in SUI patients by focusing on compliance, a viscoelastic parameter critically defining the bladder's storage function, in a clinical study. Moreover, the potential involvement of stimulation-induced neuromodulation in iVES-modified compliance was investigated by comparing the therapeutic outcomes of SUI patients treated with iVES to those who underwent a trans-obturator tape (TOT) implantation surgery, where a mid-urethral sling was implanted without electric stimulation. Patients and methods: Urodynamic and viscoelastic data were collected from 21 SUI patients treated with a regimen combining iVES and biofeedback-assisted pelvic floor muscle training (iVES-bPFMT; 20-min iVES and 20-min bPFMT sessions, twice per week, for 3 months). This regimen complied with ethical standards. Data from 21 SUI patients who received TOT implantation were retrospectively analyzed. Mean compliance (Cm), infused volume (Vinf), and threshold pressure (Pthr) from the pressure-flow/volume investigations were assessed. Results: Compared with the pretreatment control, iVES-bPFMT consistently and significantly increased Cm (18/21; 85%, p = 0.017, N = 21) and Vinf (16/21; 76%, p = 0.046; N = 21) but decreased Pthr (16/21; 76%, p = 0.026, N = 21). In contrast, TOT implantation did not result in consistent or significant changes in Cm, Vinf, or Pthr (p = 0.744, p = 0.295, p = 0.651, respectively; all N = 21). Conclusion: Our results provide viscoelastic and thermodynamic evidence supporting an additional benefit of iVES-bPFMT to bladder storage in SUI patients by modifying bladder compliance, possibly due to the potentiated hypogastric tone, which did not occur in TOT-treated SUI patients.Clinical trial registration: ClinicalTrials.gov, NCT02185235 and NCT05977231.

2.
Anesth Analg ; 138(5): 1107-1119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390022

RESUMO

BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.


Assuntos
Antineoplásicos , Neuralgia , Ratos , Animais , Paclitaxel/toxicidade , Paclitaxel/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/farmacologia , Ratos Sprague-Dawley , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Gânglios Espinais , Canais de Cátion TRPV/genética , Antineoplásicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Epigênese Genética
3.
Bioengineering (Basel) ; 10(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508880

RESUMO

Although trans-vaginal mesh (TVM) offers a successful anatomical reconstruction and can subjectively relieve symptoms/signs in pelvic organ prolapse (POP) patients, its objective benefits to the voiding function of the bladder have not been well established. In this study, we investigated the therapeutic advantage of TVM on bladder function by focusing on the thermodynamic workload of voiding. The histories of 31 POP patients who underwent TVM repair were retrospectively reviewed. Cystometry and pressure volume analysis (PVA) of the patients performed before and after the operation were analyzed. TVM postoperatively decreased the mean voiding resistance (mRv, p < 0.05, N = 31), reduced the mean and peak voiding pressure (mPv, p < 0.05 and pPv, p < 0.01, both N = 31), and elevated the mean flow rate (mFv, p < 0.05, N = 31) of voiding. While displaying an insignificant effect on the voided volume (Vv, p < 0.05, N = 31), TVM significantly shortened the voiding time (Tv, p < 0.05, N = 31). TVM postoperatively decreased the loop-enclosed area (Apv, p < 0.05, N = 31) in the PVA, indicating that TVM lessened the workload of voiding. Moreover, in 21 patients who displayed postvoiding urine retention before the operation, TVM decreased the residual volume (Vr, p < 0.01, N = 21). Collectively, our results reveal that TVM postoperatively lessened the workload of bladder voiding by diminishing voiding resistance, which reduced the pressure gradient required for driving urine flow.

4.
Can J Cardiol ; 37(10): 1593-1606, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838228

RESUMO

BACKGROUND: Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism ofclaudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia. METHODS: Myocardial ischemia/reperfusion (I/R; 30 min/24 h) and hypoxia/reoxygenation (H/R; 24 h/4 h) were used in this study. Confocal microscopy and transmission electron microscope (TEM) were used to observe mitochondrial morphology. RESULTS: Claudin-5 was detected in murine heart tissue and neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial I/R or H/R. Confocal microscopy showedclaudin-5 presented in the mitochondria of NRCM. H/R-induced claudin-5 downregulation was accompanied by mitochondrial fragmentation. The mitofusin 2 (Mfn2) expressionwas dramatically decreased while the dynamin-related protein (Drp) 1 expression was significantly increased after H/R. The TEM indicatedH/R-induced mitochondrial swelling and fission. Adenoviral claudin-5 overexpression reversed these structural disintegration of mitochondria. The mitochondria-centered intrinsic pathway of apoptosis triggered by H/R and indicated by the cytochrome c and cleaved caspase 3 in the cytoplasm of NRCMs was also reduced by overexpressing claudin-5. Claudin-5 overexpression in mouse heart also significantly decreased cleaved caspase 3 and the infarct size in ischemic heart with improved systolic function. CONCLUSION: We demonstrated for the first time the presence of claudin-5 in the mitochondria in cardiomyocytes and provided the firm evidence for the cardioprotective role of claudin-5 in the preservation of mitochondrial dynamics and cell fate against hypoxia- or ischemia-induced stress.


Assuntos
Claudina-5/genética , Hipóxia/prevenção & controle , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Células Cultivadas , Claudina-5/biossíntese , Dinaminas/biossíntese , Dinaminas/genética , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/genética , Hipóxia/genética , Hipóxia/patologia , Proteínas de Membrana , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley
5.
Clin Sci (Lond) ; 133(7): 905-917, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30957778

RESUMO

Gut microbiota alterations manifest as intermittent hypoxia and fragmented sleep, thereby mimicking obstructive sleep apnea-hypopnea syndrome (OSAHS). Here, we sought to perform the first direct survey of gut microbial dysbiosis over a range of apnea-hypopnea indices (AHI) among patients with OSAHS. We obtained fecal samples from 93 patients with OSAHS [5 < AHI ≤ 15 (n=40), 15 < AHI ≤ 30 (n=23), and AHI ≥ 30 (n=30)] and 20 controls (AHI ≤ 5) and determined the microbiome composition via 16S rRNA pyrosequencing and bioinformatics analysis of variable regions 3-4. We measured fasting levels of homocysteine (HCY), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). Results revealed gut microbial dysbiosis in several patients with varying severities of OSAHS, reliably separating them from controls with a receiver operating characteristic-area under the curve (ROC-AUC) of 0.789. Functional analysis in the microbiomes of patients revealed alterations; additionally, decreased in short-chain fatty acid (SCFA)-producing bacteria and increased pathogens, accompanied by elevated levels of IL-6. Lactobacillus levels correlated with HCY levels. Stratification analysis revealed that the Ruminococcus enterotype posed the highest risk for patients with OSAHS. Our results show that the presence of an altered microbiome is associated with HCY among OSAHS patients. These changes in the levels of SCFA affect the levels of pathogens that play a pathophysiological role in OSAHS and related metabolic comorbidities.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Doenças Metabólicas/microbiologia , Apneia Obstrutiva do Sono/microbiologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Comorbidade , Disbiose , Fezes/microbiologia , Feminino , Homocisteína/sangue , Interações Hospedeiro-Patógeno , Humanos , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/epidemiologia , Pessoa de Meia-Idade , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/epidemiologia
6.
J Neurosci ; 38(43): 9160-9174, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30201771

RESUMO

To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.


Assuntos
Histonas/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Animais , Histonas/genética , Masculino , Neuralgia/induzido quimicamente , Neuralgia/genética , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/toxicidade , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
7.
Cell Death Dis ; 9(8): 811, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042425

RESUMO

Presynaptic active zone proteins play a crucial role in regulating synaptic plasticity. Although the ubiquitin-proteasome system underlying the degradation of the presynaptic active zone protein is well established, the contribution of this machinery to regulating spinal plasticity during neuropathic pain development remains unclear. Here, using male Sprague Dawley rats, we demonstrated along with behavioral allodynia, neuropathic injury induced a marked elevation in the expression levels of an active zone protein Munc13-1 in the homogenate and synaptic plasma membrane of the ipsilateral dorsal horn. Moreover, nerve injury-increased Munc13-1 expression was associated with an increase in the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in ipsilateral dorsal horn neurons. This neuropathic injury-induced accumulation of Munc13-1 colocalized with synaptophysin but not homer1 in the dorsal horn. Focal knockdown of spinal Munc13-1 expression attenuated behavioral allodynia and the increased frequency, not the amplitude, of mEPSCs in neuropathic rats. Remarkably, neuropathic injury decreased spinal Fbxo45 expression, Fbxo45-Munc13-1 co-precipitation, and Munc13-1 ubiquitination in the ipsilateral dorsal horn. Conversely, focal knockdown of spinal Fbxo45 expression in naive animals resulted in behavioral allodynia in association with similar protein expression and ubiquitination in the dorsal horn as observed with neuropathic injury rats. Furthermore, both neuropathic insults and intrathecal injection of tumor necrosis factor-α (TNF-α) impeded spinal Fbxo45-dependent Munc13-1 ubiquitination, which was reversed by intrathecal TNF-α-neutralizing antibody. Our data revealed that spinal TNF-α impedes Fbxo45-dependent Munc13-1 ubiquitination that accumulates Munc13-1 in the presynaptic area and hence facilitates the synaptic excitability of nociceptive neurotransmission underlying neuropathic pain.


Assuntos
Proteínas F-Box/metabolismo , Hiperalgesia/patologia , Proteínas do Tecido Nervoso/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Ácido Glutâmico/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiologia , Nervos Espinhais/lesões , Fator de Necrose Tumoral alfa/imunologia
8.
Anesthesiology ; 125(4): 779-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428822

RESUMO

BACKGROUND: The anterior cingulate cortex (ACC) is a brain region that has been critically implicated in the processing of pain perception and modulation. While much evidence has pointed to an increased activity of the ACC under chronic pain states, less is known about whether pain can be alleviated by inhibiting ACC neuronal activity. METHODS: The authors used pharmacologic, chemogenetic, and optogenetic approaches in concert with viral tracing technique to address this issue in a mouse model of bone cancer-induced mechanical hypersensitivity by intratibia implantation of osteolytic fibrosarcoma cells. RESULTS: Bilateral intra-ACC microinjections of γ-aminobutyric acid receptor type A receptor agonist muscimol decreased mechanical hypersensitivity in tumor-bearing mice (n =10). Using adenoviral-mediated expression of engineered Gi/o-coupled human M4 (hM4Di) receptors, we observed that activation of Gi/o-coupled human M4 receptors with clozapine-N-oxide reduced ACC neuronal activity and mechanical hypersensitivity in tumor-bearing mice (n = 11). In addition, unilateral optogenetic silencing of ACC excitatory neurons with halorhodopsin significantly decreased mechanical hypersensitivity in tumor-bearing mice (n = 4 to 9), and conversely, optogenetic activation of these neurons with channelrhodopsin-2 was sufficient to provoke mechanical hypersensitivity in sham-operated mice (n = 5 to 9). Furthermore, we found that excitatory neurons in the ACC send direct descending projections to the contralateral dorsal horn of the lumbar spinal cord via the dorsal corticospinal tract. CONCLUSIONS: The findings of this study indicate that enhanced neuronal activity in the ACC contributes to maintain bone cancer-induced mechanical hypersensitivity and suggest that the ACC may serve as a potential therapeutic target for treating bone cancer pain.


Assuntos
Neoplasias Ósseas/complicações , Giro do Cíngulo/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C3H , Muscimol
9.
Exp Neurol ; 255: 19-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24582917

RESUMO

Fear conditioning in animals has been used extensively to model clinical anxiety disorders. While individual animals exhibit marked differences in their propensity to undergo fear conditioning, the physiologically relevant mediators have not yet been fully characterized. Here, we demonstrate that C57BL/6 inbred mouse strain subjected to a regimen of chronic social defeat stress (CSDS) can be separated into susceptible and resistant subpopulations that display different levels of fear responses in an auditory fear conditioning paradigm. Susceptible mice had significantly more c-Fos protein expression in neurons of the basolateral amygdala (BLA) following CSDS and showed exaggerated conditioned fear responses, while there were no significant differences between groups in innate anxiety- and depressive-like behaviors. Through the use of conditional brain-derived neurotrophic factor (BDNF) knockout strategies, we find that elevated BLA BDNF level following fear conditioning training is a key mediator contributing to determine the levels of conditioned fear responses. Our results also show that relative to susceptible mice, resistant mice had a much faster recovery from conditioned stimuli-induced cardiovascular and corticosterone responses. Systemic administration of norepinephrine reuptake inhibitor atomoxetine increased c-Fos protein expression in BLA neurons following fear conditioning training and promoted the expression of conditioned fear in resistant mice. Conversely, administration of ß-adrenergic receptor antagonist propranolol reduced fear conditioning training-induced c-Fos protein expression in BLA neurons and reduced conditioned fear responses in susceptible mice. These findings reveal a novel role for the BDNF signaling within the BLA in mediating individual differences in autonomic, neuroendocrine and behavioral reactivity to fear conditioning.


Assuntos
Tonsila do Cerebelo/metabolismo , Aprendizagem por Associação/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Medo/fisiologia , Estimulação Acústica , Inibidores da Captação Adrenérgica/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Aprendizagem por Associação/efeitos dos fármacos , Cloridrato de Atomoxetina , Fator Neurotrófico Derivado do Encéfalo/genética , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Propilaminas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA