Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 102: 105057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490101

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Carcinogênese/genética , DNA , Proteínas Repressoras , Transativadores
2.
Front Genet ; 12: 673530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539729

RESUMO

Nasopharyngeal cancer (NPC), a cancer derived from epithelial cells in the nasopharynx, is a cancer common in China, Southeast Asia, and Africa. The three-dimensional (3D) genome organization of nasopharyngeal cancer is poorly understood. A major challenge in understanding the 3D genome organization of cancer samples is the lack of a method for the characterization of chromatin interactions in solid cancer needle biopsy samples. Here, we developed Biop-C, a modified in situ Hi-C method using solid cancer needle biopsy samples. We applied Biop-C to characterize three nasopharyngeal cancer solid cancer needle biopsy patient samples. We identified topologically associated domains (TADs), chromatin interaction loops, and frequently interacting regions (FIREs) at key oncogenes in nasopharyngeal cancer from the Biop-C heatmaps. We observed that the genomic features are shared at some important oncogenes, but the patients also display extensive heterogeneity at certain genomic loci. On analyzing the super enhancer landscape in nasopharyngeal cancer cell lines, we found that the super enhancers are associated with FIREs and can be linked to distal genes via chromatin loops in NPC. Taken together, our results demonstrate the utility of our Biop-C method in investigating 3D genome organization in solid cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA