Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109587, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623339

RESUMO

In this study, a murine sepsis model was developed using the cecum ligation and puncture (CLP) technique. The expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) in the brain increased 6 h after CLP but decreased 24 h later when elevated endogenous dopamine levels in the brain were sustained. Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride reduced dopamine levels in the striatum and increased mortality in septic mice. Dopamine D1-like receptors were significantly expressed in the brain, but not in the lungs. Intraperitoneally administered SKF-81297 (SKF), a blood-brain barrier-permeable D1-like receptor agonist, prevented CLP-induced death of septic mice with ameliorated acute lung injury and cognitive dysfunction and suppressed TNF-α and IL-1ß expression. The D1-like receptor antagonist SCH-23390 abolished the anti-inflammatory effects of SKF. These data suggest that D1-like receptor-mediated signals in the brain prevent CLP-induced inflammation in both the brain and the periphery.

2.
Auris Nasus Larynx ; 51(3): 472-480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520980

RESUMO

OBJECTIVE: Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS: The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS: The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION: This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.


Assuntos
Aminoácido Oxirredutases , Neoplasias de Cabeça e Pescoço , Trocador 1 de Sódio-Hidrogênio , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Humanos , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Neoplasias da Língua/metabolismo , Microambiente Tumoral , Técnicas de Silenciamento de Genes , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Carcinogênese/genética , Colágeno/metabolismo , Células Matadoras Naturais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética
3.
J Neurosurg ; 141(3): 653-663, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457785

RESUMO

OBJECTIVE: The prognosis of glioblastoma (GBM) correlates with residual tumor volume after surgery. In fluorescence-guided surgery, 5-aminolevulinic acid (ALA) has been used to maximize resection while avoiding neurological morbidity. However, not all tumor cells, particularly glioma stem cells (GSCs), display 5-ALA-mediated protoporphyrin IX (PpIX) fluorescence (5-ALA fluorescence). The authors searched for repositioned drugs that affect mitochondrial functions and energy metabolism, identifying berberine (BBR) as a potential enhancer of 5-ALA fluorescence. In this study, they investigated whether BBR can enhance 5-ALA fluorescence in GSCs and whether BBR can be applied to clinical practice as a 5-ALA fluorescence enhancer. METHODS: The effects of BBR on 5-ALA fluorescence in glioma and GSCs were evaluated by flow cytometry (fluorescence-activated cell sorting [FACS]) analysis. As 5-ALA is metabolized for heme synthesis, the effects of BBR on mRNA expressions of 7 enzymes in the heme-synthesis pathway were analyzed. Enzymes showing significantly higher expression than control in all cells were identified and protein analysis was performed. To examine clinical availability, the detectability and cytotoxicity of BBR in tumor-transplanted mice were analyzed. RESULTS: Fluorescence microscopy revealed much more intense 5-ALA fluorescence in both GSCs and non-stem cells with 5-ALA and BBR than with 5-ALA alone. FACS showed that BBR greatly enhanced 5-ALA fluorescence compared with 5-ALA alone, and enhancement was much higher for GSCs than for glioma cells. Among the 7 enzymes examined, BBR upregulated mRNA expressions of ALA synthetase 1 (ALAS1) more highly in all cells, and activated ALAS1 through deregulating ALAS1 activity inhibited by the negative feedback of heme. An in vivo study showed that 5-ALA fluorescence with 5-ALA and BBR was significantly stronger than with 5-ALA alone, and the sensitivity and specificity of BBR-enhanced fluorescence were both 100%. In addition, BBR did not show any cytotoxicity for normal brain tissue surrounding the tumor mass. CONCLUSIONS: BBR enhanced 5-ALA-mediated PpIX fluorescence by upregulating and activating ALAS1 through deregulation of negative feedback inhibition by heme. BBR is a clinically used drug with no side effects. BBR is expected to significantly augment fluorescence-guided surgery and photodynamic therapy.


Assuntos
Ácido Aminolevulínico , Berberina , Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neoplásicas , Protoporfirinas , Ácido Aminolevulínico/farmacologia , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Camundongos , Protoporfirinas/farmacologia , Linhagem Celular Tumoral , Cirurgia Assistida por Computador/métodos , Camundongos Nus , Fluorescência , Glioma/cirurgia , Glioma/metabolismo , Glioma/patologia , Glioma/tratamento farmacológico
4.
Neurochem Int ; 163: 105479, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608872

RESUMO

Microglia play a central role in neuroinflammatory processes by releasing proinflammatory mediators. This process is tightly regulated along with neuronal activities, and neurotransmitters may link neuronal activities to the microglia. In this study, we showed that primary cultured rat microglia express the dopamine (DA) D1 receptor (D1R) and D4R, but not D2R, D3R, or D5R. In response to a D1R-specific agonist SKF-81297 (SKF), the cultured microglia exhibited increased intracellular cAMP levels. DA and SKF suppressed lipopolysaccharide (LPS)-induced expression of interleukin-1ß (IL-1ß) and tumor necrosis α (TNFα) in cultured microglia. Microglia in the normal mature rat prefrontal cortex (PFC) were sorted and significant expression of D1R, D2R, and D4R was observed. A delirium model was established by administering LPS intraperitoneally to mature male Wistar rats. The model also displayed sleep-wake disturbances as revealed by electroencephalogram and electromyogram recordings as well as increased expression of IL-1ß and TNFα in the PFC. DA levels were increased in the PFC 21 h after LPS administration. Increased cytokine expression was observed in sorted microglia from the PFC of the delirium model; however, TNFα, but not IL-1ß expression, was abruptly decreased 21 h after LPS administration in the delirium model, whereas DA levels were increased. A D1R antagonist SCH23390 partially abolished the TNFα expression change. This suggests that endogenous DA may play a role in suppressing neuroinflammation. Administration of the DA precursor L-DOPA or SKF to the delirium model rats inhibited the expression of IL-1ß and TNFα. The simultaneous administration of clozapine, a D4R antagonist, strengthened the suppressive effects of L-DOPA. These results suggest that D1R mediates the suppressive effects of LPS-induced neuroinflammation, in which microglia may play an important role. Agonists for D1R may be effective for treating delirium.


Assuntos
Delírio , Dopamina , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Encéfalo , Dopamina/farmacologia , Levodopa/farmacologia , Lipopolissacarídeos/toxicidade , Microglia , Doenças Neuroinflamatórias , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia , Receptores de Dopamina D1/metabolismo
5.
Front Neurosci ; 16: 941363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968363

RESUMO

Ischemic stroke is a leading cause of mortality and permanent disability. Chronic stroke lesions increase gradually due to the secondary neuroinflammation that occurs following acute ischemic neuronal degeneration. In this study, the ameliorating effect of a cytokine mixture consisting of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 was evaluated on ischemic brain injury using a rat stroke model prepared by transient middle cerebral artery occlusion (tMCAO). The mixture reduced infarct volume and ameliorated ischemia-induced motor and cognitive dysfunctions. Sorted microglia cells from the ischemic hemisphere of rats administered the mixture showed reduced mRNA expression of tumor necrosis factor (TNF)-α and IL-1ß at 3 days post-reperfusion. On flow cytometric analysis, the expression of CD86, a marker of pro-inflammatory type microglia, was suppressed, and the expression of CD163, a marker of tissue-repairing type microglia, was increased by the cytokine treatment. Immunoblotting and immunohistochemistry data showed that the cytokines increased the expression of the anti-apoptotic protein Bcl-xL in neurons in the ischemic lesion. Thus, the present study demonstrated that cytokine treatment markedly suppressed neurodegeneration during the chronic phase in the rat stroke model. The neuroprotective effects may be mediated by phenotypic changes of microglia that presumably lead to increased expression of Bcl-xL in ischemic lesions, while enhancing neuronal survival.

6.
Neoplasia ; 23(8): 754-765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34229297

RESUMO

The abilities to invade surrounding tissues and metastasize to distant organs are the most outstanding features that distinguish malignant from benign tumors. However, the mechanisms preventing the invasion and metastasis of benign tumor cells remain unclear. By using our own rat distant metastasis model, gene expression of cells in primary tumors was compared with that in metastasized tumors. Among many distinct gene expressions, we have focused on chloride intracellular channel protein 2 (CLIC2), an ion channel protein of as-yet unknown function, which was predominantly expressed in the primary tumors. We created CLIC2 overexpressing rat glioma cell line and utilized benign human meningioma cells with naturally high CLIC2 expression. CLIC2 was expressed at higher levels in benign human brain tumors than in their malignant counterparts. Moreover, its high expression was associated with prolonged survival in the rat metastasis and brain tumor models as well as with progression-free survival in patients with brain tumors. CLIC2 was also correlated with the decreased blood vessel permeability likely by increased contents of cell adhesion molecules. We found that CLIC2 was secreted extracellularly, and bound to matrix metalloproteinase (MMP) 14. Furthermore, CLIC2 prevented the localization of MMP14 in the plasma membrane, and inhibited its enzymatic activity. Indeed, overexpressing CLIC2 and recombinant CLIC2 protein effectively suppressed malignant cell invasion, whereas CLIC2 knockdown reversed these effects. Thus, CLIC2 suppress invasion and metastasis of benign tumors at least partly by inhibiting MMP14 activity.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Canais de Cloreto/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/etiologia , Permeabilidade Capilar/genética , Linhagem Celular Tumoral , Movimento Celular , Canais de Cloreto/genética , Ativação Enzimática , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Metaloproteinase 14 da Matriz/genética , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Ligação Proteica , Ratos , Microambiente Tumoral
7.
Neurochem Int ; 134: 104672, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926989

RESUMO

Chronic constriction injury of the sciatic nerve is frequently considered as a cause of chronic neuropathic pain. Marked activation of microglia in the posterior horn (PH) has been well established with regard to this pain. However, microglial activation in the anterior horn (AH) is also strongly induced in this process. Therefore, in this study, we compared the differential activation modes of microglia in the AH and PH of the lumbar cord 7 days after chronic constriction injury of the left sciatic nerve in Wistar rats. Microglia in both the ipsilateral AH and PH demonstrated increased immunoreactivity of the microglial markers Iba1 and CD11b. Moreover, abundant CD68+ phagosomes were observed in the cytoplasm. Microglia in the AH displayed elongated somata with tightly surrounding motoneurons, whereas cells in the PH displayed a rather ameboid morphology and were attached to myelin sheaths rather than to neurons. Microglia in the AH strongly expressed NG2 chondroitin sulfate proteoglycan. Despite the tight attachment to neurons in the AH, a reduction in synaptic proteins was not evident, suggesting engagement of the activated microglia in synaptic stripping. Myelin basic protein immunoreactivity was observed in the phagosomes of activated microglia in the PH, suggesting the phagocytic removal of myelin. CCI caused both motor deficit and hyperalgesia that were evaluated by applying BBB locomotor rating scale and von Frey test, respectively. Motor defict was the most evident at postoperative day1, and that became less significant thereafter. By contrast, hyperalgesia was not severe at day 1 but it became worse at least by day 7. Collectively, the activation modes of microglia were different between the AH and PH, which may be associated with the difference in the course of motor and sensory symptoms.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Animais , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Ratos Wistar , Nervo Isquiático/metabolismo
8.
Tissue Barriers ; 7(1): 1593775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929599

RESUMO

Chloride intracellular channel protein 2 (CLIC2) belongs to the CLIC family of conserved metazoan proteins. Although CLICs have been identified as chloride channels, they are currently considered multifunctional proteins. CLIC2 is the least studied family member. We investigated CLIC2 expression and localization in human hepatocellular carcinoma, metastatic colorectal cancer in the liver, and colorectal cancer. Significant expression of mRNAs encoding CLIC1, 2, 4, and 5 were found in the human tissues, but only CLIC2 was predominantly expressed in non-cancer tissues surrounding cancer masses. Fibrotic or dysfunctional (aspartate aminotransferase ≥40) non-cancer liver tissues and advanced stage HCC tissues expressed low levels of CLIC2. Endothelial cells lining blood vessels but not lymphatic vessels in non-cancer tissues expressed CLIC2 as well as high levels of the tight junction proteins claudins 1 and 5, occludin, and ZO-1. Most endothelial cells in blood vessels in cancer tissues had very low expressions of CLIC2 and tight junction proteins. CD31+/CD45- endothelial cells isolated from non-cancer tissues expressed mRNAs encoding CLIC2, claudin 1, occludin and ZO-1, while similar cell fractions from cancer tissues had very low expressions of these molecules. Knockdown of CLIC2 expression in human umbilical vein endothelial cells (HUVECs) allowed human cancer cells to transmigrate through a HUVEC monolayer. These results suggest that CLIC2 may be involved in the formation and/or maintenance of tight junctions and that cancer tissue vasculature lacks CLIC2 and tight junctions, which allows the intravasation of cancer cells necessary for hematogenous metastasis.


Assuntos
Canais de Cloreto/genética , Junções Íntimas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Glia ; 66(10): 2158-2173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194744

RESUMO

Microglia and blood-borne macrophages in injured or diseased brains are difficult to distinguish because they share many common characteristics. However, the identification of microglia-specific markers and the use of flow cytometry have recently made it easy to discriminate these types of cells. In this study, we analyzed the features of blood-borne macrophages, and activated and resting microglia in a rat traumatic brain injury (TBI) model. Oxidative injury was indicated in macrophages and neurons in TBI lesions by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Generation of mitochondrial reactive oxygen species (ROS) was markedly observed in granulocytes and macrophages, but not in activated or resting microglia. Dihydroethidium staining supported microglia not being the major source of ROS in TBI lesions. Furthermore, macrophages expressed NADPH oxidase 2, interleukin-1ß (IL-1ß), and CD68 at higher levels than microglia. In contrast, microglia expressed transforming growth factor ß1 (TGFß1), interleukin-6 (IL-6), and tumor necrosis factor α at higher levels than macrophages. A hypnotic, bromovalerylurea (BU), which has anti-inflammatory effects, reduced both glycolysis and mitochondrial oxygen consumption. BU administration inhibited chemokine CCL2 expression, accumulation of monocytes/macrophages, 8-OHdG generation, mitochondrial ROS generation, and proinflammatory cytokine expression, and markedly ameliorated the outcome of the TBI model. Yet, BU did not inhibit microglial activation or expression of TGFß1 and insulin-like growth factor 1 (IGF-1). These results indicate that macrophages are the major aggravating cell type in TBI lesions, in particular during the acute phase. Activated microglia may even play favorable roles. Reduction of cellular energy metabolism in macrophages and suppression of CCL2 expression in injured tissue may lead to amelioration of TBI.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Lesões Encefálicas Traumáticas/fisiopatologia , Bromisoval/farmacologia , Hipnóticos e Sedativos/farmacologia , Macrófagos/fisiologia , Microglia/fisiologia , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/lesões , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , RNA Mensageiro/metabolismo , Ratos Wistar , Ferimentos Perfurantes/tratamento farmacológico , Ferimentos Perfurantes/patologia , Ferimentos Perfurantes/fisiopatologia
10.
Biochem Biophys Res Commun ; 496(2): 542-548, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29339155

RESUMO

CD200 mediates immunosuppression in immune cells that express its receptor, CD200R. There are two CD200 variants; truncated CD200 that lacks the part of N-terminal sequence necessary for CD200R binding (CD200S) and full-length CD200 (CD200L). We established a novel lung metastasis model by subcutaneously transplanting C6 glioma cells into the backs of neonatal Wistar rats. All transplanted rats developed large back tumors, nearly 90% of which bore lung metastases. To compare the effects of CD200S and CD200L on tumor immunity, CD200L (C6-L)- or CD200S (C6-S)-expressing C6 cells were similarly transplanted. The results showed that 100% of rats with C6-L tumors developed lung metastases, while metastases were found in only 44% of rats with C6-S tumors (n = 25). Tumors disappeared in approximately 20% of the C6-S-bearing rats, and these animals evaded death 180 d after transplantation, while all C6-L tumor-bearing rats died after 45 d. Next generation sequencing revealed that C6-S tumors expressed chemokines and granzyme B at much higher levels than C6-L tumors. Flow cytometry revealed that C6-S tumors contained more dead cells and more CD45+ cells, including natural killer cells and CD8+ lymphocytes. In particular, multiple subsets of dendritic cells expressing CD11c, MHC class II, CD8, and/or CD103 were more abundant in C6-S than in C6-L tumors. These results suggested that CD200S induced the accumulation of multiple dendritic cell subsets that activated cytotoxic T lymphocytes, leading to the elimination of metastasizing tumor cells.


Assuntos
Antígenos CD/imunologia , Glioma/imunologia , Glioma/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Animais , Antígenos CD/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Tolerância Imunológica , Imunidade Celular , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Ratos Wistar , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia
11.
Neurochem Int ; 90: 56-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26190182

RESUMO

Noradrenaline (NA) has marked anti-inflammatory effects on activated microglial cells. The present study was conducted to elucidate the mechanisms underlying the NA effects using rat primary cultured microglial cells. NA, an α1 agonist, phenylephrine (Phe) and a ß2 agonist, terbutaline (Ter) suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) release by microglia and prevented neuronal degeneration in LPS-treated neuron-microglia coculture. The agents suppressed expression of mRNA encoding proinflammatory mediators. Both an α1-selective blocker terazocine and a ß2-selective blocker butoxamine overcame the suppressive effects of NA. cAMP-dependent kinase (PKA) inhibitors did not abolish the suppressive NA effects. LPS decreased IκB leading to NFκB translocation into nuclei, then induced phosphorylation of signal transducer and activator of transcription 1 (STAT1) and expression of interferon regulatory factor 1 (IRF1). NA inhibited LPS-induced these changes. When NFκB expression was knocked down with siRNA, LPS-induced STAT1 phosphorylation and IRF1 expression was abolished. NA did not suppress IL-6 induced STAT1 phosphorylation and IRF1 expression. These results suggest that one of the critical mechanisms underlying the anti-inflammatory effects of NA is the inhibition of NFκB translocation. Although inhibitory effects of NA on STAT1 phosphorylation and IRF1 expression may contribute to the overall suppressive effects of NA, these may be the downstream events of inhibitory effects on NFκB. Since NA, Phe and Ter exerted almost the same effects and PKA inhibitors did not show significant antagonistic effects, the suppression by NA might not be dependent on specific adrenergic receptors and cAMP-dependent signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Norepinefrina/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos
12.
Biochem Biophys Res Commun ; 459(2): 319-326, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732089

RESUMO

Sepsis is a severe pathologic event, frequently causing death in critically ill patients. However, there are no approved drugs to treat sepsis, despite clinical trials of many agents that have distinct targets. Therefore, a novel effective treatment should be developed based on the pathogenesis of sepsis. We recently observed that an old hypnotic drug, bromvalerylurea (BU) suppressed expression of many kinds of pro- and anti-inflammatory mediators in LPS- or interferon-γ activated alveolar and peritoneal macrophages (AMs and PMs). Taken the anti-inflammatory effects of BU on macrophages, we challenged it to septic rats that had been subjected to cecum-ligation and puncture (CLP). BU was subcutaneously administered to septic rats twice per day. Seven days after CLP treatment, 85% of septic rats administrated vehicle had died, whereas administration of BU reduce the rate to 50%. Septic rats showed symptoms of multi-organ failure; respiratory, circulatory and renal system failures as revealed by histopathological analyses, blood gas test and others. BU ameliorated these symptoms. BU also prevented elevated serum-IL-6 level as well as IL-6 mRNA expression in septic rats. Collectively, BU might be a novel agent to ameliorate sepsis by preventing the onset of MOF.


Assuntos
Bromisoval/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Sepse/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas I-kappa B/metabolismo , Interferon gama/metabolismo , Interleucina-6/sangue , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT1/metabolismo , Sepse/etiologia , Sepse/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA