Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565370

RESUMO

Endometriosis, a painful gynecological condition accompanied by inflammation in women of reproductive age, is associated with an increased risk of ovarian cancer. We evaluated the role of peritoneal heme accumulated during menstrual cycling, as well as peritoneal and lesional macrophage phenotype, in promoting an oncogenic microenvironment. We quantified the heme-degrading enzyme, heme oxygenase-1 (HO-1, encoded by Hmox1) in normal peritoneum, endometriotic lesions and endometriosis-associated ovarian cancer (EAOC) of clear cell type (OCCC). HO-1 was expressed primarily in macrophages and increased in endometrioma and OCCC tissues relative to endometriosis and controls. Further, we compared cytokine expression profiles in peritoneal macrophages (PM) and peripheral blood mononuclear cells (PBMC) in women with endometriosis versus controls as a measure of a tumor-promoting environment in the peritoneum. We found elevated levels of HO-1 along with IL-10 and the pro-inflammatory cytokines (IL-1ß, IL-16, IFNγ) in PM but not in PBMC from endometriosis patients. Using LysM-Cre:Hmox1flfl conditional knockout mice, we show that a deficiency of HO-1 in macrophages led to the suppression of growth of ID8 ovarian tumors implanted into the peritoneum. The restriction of ID8 ovarian tumor growth was associated with an increased number of Mac3+ macrophage and B cells in LysM-Cre:Hmox1flfl mice compared to controls. Functional experiments in ovarian cancer cell lines show that HO-1 is induced by heme. Low levels of exogenous heme promoted ovarian cancer colony growth in soft agar. Higher doses of heme led to slower cancer cell colony growth in soft agar and the induction of HO-1. These data suggest that perturbation of heme metabolism within the endometriotic niche and in cancer cells themselves may be an important factor that influences tumor initiation and growth.

2.
Cell Rep ; 32(12): 108181, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966797

RESUMO

Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tumor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates specific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth. We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression. Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination.


Assuntos
Heme/metabolismo , Hemopexina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , DNA/genética , Progressão da Doença , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Fenótipo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Resultado do Tratamento , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
3.
Cell Death Dis ; 10(2): 72, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683864

RESUMO

Phenotypic changes of myeloid cells are critical to the regulation of premature aging, development of cancer, and responses to infection. Heme metabolism has a fundamental role in the regulation of myeloid cell function and activity. Here, we show that deletion of heme oxygenase-1 (HO-1), an enzyme that removes heme, results in an impaired DNA damage response (DDR), reduced cell proliferation, and increased cellular senescence. We detected increased levels of p16INK4a, H2AXγ, and senescence-associated-ß-galactosidase (SA-ß-Gal) in cells and tissues isolated from HO-1-deficient mice. Importantly, deficiency of HO-1 in residential macrophages in chimeric mice results in elevated DNA damage and senescence upon radiation-induced injury. Mechanistically, we found that mammalian target of rapamycin (mTOR)/S6 protein signaling is critical for heme and HO-1-regulated phenotype of macrophages. Collectively, our data indicate that HO-1, by detoxifying heme, blocks p16INK4a expression in macrophages, preventing DNA damage and cellular senescence.


Assuntos
Proliferação de Células/genética , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/metabolismo , Animais , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Células RAW 264.7 , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA