Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 32(1): 24-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748532

RESUMO

Abaloparatide is a novel 34-amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor (PTH1R) signaling pathway with 41% homology to PTH(1-34) and 76% homology to PTHrP(1-34). A 12-month treatment study was conducted in osteopenic ovariectomized (OVX) rats to characterize the mechanisms by which abaloparatide increases bone mass. Sprague-Dawley (SD) rats were subjected to OVX or sham surgery at age 6 months and left untreated for 3 months to allow OVX-induced bone loss. Ten OVX rats were euthanized after this bone depletion period, and the remaining OVX rats received daily subcutaneous injections of vehicle (n = 18) or abaloparatide at 1, 5, or 25 µg/kg/d (n = 18/dose level) for 12 months. Sham controls (n = 18) received vehicle daily. Bone densitometry and biochemical markers of bone formation and resorption were assessed longitudinally, and L3 vertebra and tibia were collected at necropsy for histomorphometry. Abaloparatide increased biochemical bone formation markers without increasing bone resorption markers or causing hypercalcemia. Abaloparatide increased histomorphometric indices of bone formation on trabecular, endocortical, and periosteal surfaces without increasing osteoclasts or eroded surfaces. Abaloparatide induced substantial increases in trabecular bone volume and density and improvements in trabecular microarchitecture. Abaloparatide stimulated periosteal expansion and endocortical bone apposition at the tibial diaphysis, leading to marked increases in cortical bone volume and density. Whole-body bone mineral density (BMD) remained stable in OVX-Vehicle controls while increasing 25% after 12 months of abaloparatide (25 µg/kg). Histomorphometry and biomarker data suggest that gains in cortical and trabecular bone mass were attributable to selective anabolic effects of abaloparatide, without evidence for stimulated bone resorption. © 2016 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osteogênese , Ovariectomia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Absorciometria de Fóton , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/sangue , Reabsorção Óssea/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Densitometria , Tamanho do Órgão/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley
2.
Bone ; 95: 143-150, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27894941

RESUMO

Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25µg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Ovariectomia , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Densitometria , Feminino , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
3.
Regul Toxicol Pharmacol ; 81: 212-222, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569204

RESUMO

Romosozumab is a humanized immunoglobulin G2 monoclonal antibody that binds and blocks the action of sclerostin, a protein secreted by the osteocyte and an extracellular inhibitor of canonical Wnt signaling. Blockade of sclerostin binding to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) allows Wnt ligands to activate canonical Wnt signaling in bone, increasing bone formation and decreasing bone resorption, making sclerostin an attractive target for osteoporosis therapy. Because romosozumab is a bone-forming agent and an activator of canonical Wnt signaling, questions have arisen regarding a potential carcinogenic risk. Weight-of-evidence factors used in the assessment of human carcinogenic risk of romosozumab included features of canonical Wnt signaling, expression pattern of sclerostin, phenotype of loss-of-function mutations in humans and mice, mode and mechanism of action of romosozumab, and findings from romosozumab chronic toxicity studies in rats and monkeys. Although the weight-of-evidence factors supported that romosozumab would pose a low carcinogenic risk to humans, the carcinogenic potential of romosozumab was assessed in a rat lifetime study. There were no romosozumab-related effects on tumor incidence in rats. The findings of the lifetime study and the weight-of-evidence factors collectively indicate that romosozumab administration would not pose a carcinogenic risk to humans.


Assuntos
Anticorpos Monoclonais/toxicidade , Neoplasias/induzido quimicamente , Animais , Anticorpos Monoclonais/administração & dosagem , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Humanos , Camundongos , Ratos , Medição de Risco
4.
J Bone Miner Metab ; 33(2): 161-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24633538

RESUMO

Bazedoxifene (BZA) is a novel selective estrogen receptor modulator in clinical development for the prevention and treatment of postmenopausal osteoporosis. This preclinical study evaluated the efficacy and safety of BZA in preventing ovariectomy (OVX)-induced bone loss in aged cynomolgus monkeys. Animals (18 per group) underwent OVX and were administered BZA (0.2, 0.5, 1, 5, or 25 mg/kg/day) or vehicle, or were sham-operated and administered vehicle, by daily oral gavage for 18 months. Biochemical markers of bone turnover were assessed at 6, 12, and 18 months, along with bone densitometry using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Animals were killed after 18 months. Uterine and pituitary weights were determined, and histomorphometric and biomechanical measurements were performed. OVX vehicle controls showed increases in bone turnover associated with cancellous and cortical bone osteopenia (in vivo), and slight decreases (not statistically significant) in biomechanical strength parameters at the lumbar spine and femoral neck. BZA partially preserved cortical and cancellous bone mass by preventing the OVX-induced increases in bone turnover. Although the response was often similar among BZA-treated groups, the strongest efficacy was generally seen at 25 mg/kg/day. Treatment with BZA did not adversely affect measures of bone strength and was well tolerated; there was no evidence of uterotrophic activity, mammary tissue was unaffected, and there were no adverse effects on plasma lipids. Treatment of ovariectomized animals with BZA partially prevented changes in bone remodeling that correlated with increases in bone mineral density, while maintaining bone strength and a favorable safety profile.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Indóis/farmacologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Absorciometria de Fóton/métodos , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Humanos , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Macaca fascicularis , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia/métodos , Moduladores Seletivos de Receptor Estrogênico/metabolismo
5.
Bone ; 64: 314-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727159

RESUMO

RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Osteoclastos/patologia , Osteopetrose/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Anticorpos Monoclonais Humanizados/imunologia , Remodelação Óssea , Denosumab , Feminino , Macaca fascicularis , Osteopetrose/diagnóstico por imagem , Fenótipo , Gravidez , Tomografia Computadorizada por Raios X , Erupção Dentária
6.
Toxicol Pathol ; 40(6 Suppl): 7S-39S, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22949413

RESUMO

The mammary gland of laboratory rodents is an important organ for the evaluation of effects of xenobiotics, especially those that perturb hormonal homeostasis or are potentially carcinogenic. Mammary gland cancer is a leading cause of human mortality and morbidity worldwide and is a subject of major research efforts utilizing rodent models. Zymbal's, preputial, and clitoral glands are standard tissues that are evaluated in animal models that enable human risk assessment of xenobiotics. A widely accepted and utilized international harmonization of nomenclature for mammary, Zymbal's, preputial, and clitoral gland lesions in laboratory animals will improve diagnostic alignment among regulatory and scientific research organizations and enrich international exchanges of information among toxicologists and pathologists.


Assuntos
Pesquisa Biomédica/normas , Clitóris/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Experimentais/patologia , Glândulas Sebáceas/patologia , Terminologia como Assunto , Animais , Animais de Laboratório , Clitóris/química , Clitóris/citologia , Feminino , Doenças dos Genitais Femininos/classificação , Doenças dos Genitais Femininos/patologia , Histocitoquímica , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/química , Neoplasias Mamárias Experimentais/patologia , Camundongos , Neoplasias Experimentais/química , Neoplasias Experimentais/classificação , Ratos , Glândulas Sebáceas/química , Glândulas Sebáceas/citologia , Testes de Toxicidade/normas , Xenobióticos
7.
Bone ; 49(3): 376-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21658483

RESUMO

A novel approach to menopausal therapy is the tissue selective estrogen complex (TSEC) that partners bazedoxifene (BZA) with conjugated estrogens (CE). We examined the effects of daily treatment with BZA 0.3mg/kg, CE 2.5mg/kg, or combined BZA/CE (BZA 0.1, 0.3, or 1.0mg/kg with CE 2.5mg/kg) over 12months on bone mass, bone architecture and strength, and biochemical markers of bone turnover in ovariectomized (OVX) female Sprague-Dawley rats vs OVX control rats. Total cholesterol and uterine weights were also evaluated. All BZA/CE dose combinations prevented ovariectomy-induced increases in bone turnover and significantly increased bone mineral density (BMD) at the lumbar spine, proximal femur, and tibia compared with OVX controls. All BZA/CE doses evaluated also prevented many of the ovariectomy-induced changes of the static and dynamic parameters of the cortical compartment of the tibia and the cancellous compartment of the L1 and L2 vertebrae. All BZA/CE doses increased biomechanical strength at the lumbar spine (L4) compared with OVX animals. The co-administration of BZA 0.3 and 1.0mg/kg/day with CE 2.5mg/kg/day showed a dose-dependent reduction in uterine wet weight compared with administration of CE alone. All BZA/CE doses significantly lowered total cholesterol levels compared with OVX controls. In conclusion, 12months of treatment with BZA/CE in OVX rats effectively maintained BMD, bone microstructure, and bone quality; and the pairing of BZA with CE prevented CE-induced uterine stimulation.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Estrogênios Conjugados (USP)/farmacologia , Estrogênios/farmacologia , Indóis/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Humanos , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiologia , Tamanho do Órgão , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tíbia/anatomia & histologia , Tíbia/efeitos dos fármacos , Tíbia/fisiologia , Útero/anatomia & histologia , Útero/efeitos dos fármacos
8.
Cell Transplant ; 20(4): 535-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21054949

RESUMO

Fibroblasts isolated from skin and from anterior cruciate ligament (ACL) secrete type I and type III collagens in vivo and in vitro. However, it is much easier and practical to obtain a small skin biopsy than an ACL sample to isolate fibroblasts for tissue engineering applications. Various tissue engineering strategies have been proposed for torn ACL replacement. We report here the results of the implantation of bioengineered ACLs (bACLs), reconstructed in vitro using a type I collagen scaffold, anchored with two porous bone plugs to allow bone-ligament-bone surgical engraftment. The bACLs were seeded with autologous living dermal fibroblasts, and grafted for 6 months in goat knee joints. Histological and ultrastructural observations ex vivo demonstrated a highly organized ligamentous structure, rich in type I collagen fibers and cells. Grafts' vascularization and innervation were observed in all bACLs that were entirely reconstructed in vitro. Organized Sharpey's fibers and fibrocartilage, including chondrocytes, were present at the osseous insertion sites of the grafts. They showed remodeling and matrix synthesis postimplantation. Our tissue engineering approach may eventually provide a new solution to replace torn ACL in humans.


Assuntos
Ligamento Cruzado Anterior/citologia , Ligamento Cruzado Anterior/transplante , Fibroblastos/citologia , Engenharia Tecidual/métodos , Animais , Bovinos , Células Cultivadas , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno Tipo III/química , Colágeno Tipo III/metabolismo , Feminino , Cabras , Humanos
9.
Anesth Analg ; 109(1): 249-57, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535718

RESUMO

BACKGROUND: A novel formulation of > or = 98% pure capsaicin (4975) is currently undergoing clinical investigation using novel routes of delivery to provide selective analgesia lasting weeks to months with a single dose. We conducted this study to assess the safety and effects of instilled and injected 4975 in rat models of wound healing osteotomy repair and sensory-motor nerve function. METHODS: Adult male and female Sprague-Dawley rats were used. To assess the effects of 4975 on nerve or muscle, 0.0083 or 0.025 mg 4975 or vehicle (25% polyethylene glycol-300) was applied to exposed sciatic nerve, or 0.1 mg 4975 or vehicle was injected into the surrounding muscle (Group 1). To assess the effect of 4975 on bone healing, an osteotomy was made in one femur and 0.5 mg of 4975 or vehicle was instilled into the site (Group 2). Behavioral testing was performed on both groups of rats and histological evaluation of the sciatic nerve, and surrounding soft tissue and bone was done at days 3, 14, and 28 after surgery. Femurs from osteotomy rats were assessed using peripheral quantitative computed tomography and biomechanical testing. Standard statistical tests were used to compare groups. RESULTS: Rats with direct application of 4975 to the sciatic nerve and surrounding muscle were no different from the controls in nociceptive sensory responses (F = 0.910, P = 0.454), grip strength (F = 0.550, P = 0.654), or histology of the muscle or sciatic nerve. In osteotomy rats, there were no statistical differences between 4975 and vehicle-treated rats for bone area (H = 2.858, P = 0.414), bone mineral content (F = 0.945, P = 0.425), or bone mineral density (F = 0.87, P = 0.462) and no difference in soft tissue healing. There were neither differences in bone stiffness (F = 1.369, P = 0.268) nor were there noticeable differences in the macro- or microscopic appearance of the right femur osteotomy healing site and surrounding soft tissues between the control group and the 4975-treated animals. CONCLUSION: A single, clinically relevant application of instilled or injected 4975 has no observable adverse effect on wound and bone healing after osteotomy or on the structural integrity of exposed muscle and nerve.


Assuntos
Capsaicina/administração & dosagem , Membro Posterior/efeitos dos fármacos , Osteotomia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Capsaicina/efeitos adversos , Feminino , Membro Posterior/patologia , Membro Posterior/fisiologia , Injeções Intramusculares , Instilação de Medicamentos , Masculino , Osteotomia/métodos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
10.
Arthritis Rheum ; 54(9): 2886-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16947421

RESUMO

OBJECTIVE: To investigate changes in the circulating levels of the C-telopeptide of type II collagen (CTX-II) with relation to disease onset and structural damage of cartilage in a rodent model of collagen-induced arthritis (CIA), and to investigate immunolocalization of the CTX-II epitope in the articular cartilage of affected joints. METHODS: Seven-week-old female Lewis rats were immunized with type II collagen and monitored using blood sampling at weekly intervals. At study termination (day 23), the animals were killed, synovial fluid was collected, and the affected joints were scored macroscopically for disease severity and underwent immunohistochemical evaluation. RESULTS: At the time of disease onset (day 15), which was characterized by redness and swelling of the affected joints (mean +/- SD macroscopic severity score 9.1 +/- 1.6), there was a 355% increase in serum CTX-II levels. The early change in serum CTX-II from day 0 to day 15 showed a significant association with the severity of cartilage damage (r = 0.61, P < 0.01). Immunostaining revealed extensive presence of the CTX-II epitope in the damaged, uncalcified cartilage tissue. CONCLUSION: The elevation in serum CTX-II concomitant with the onset of disease and proportional to cartilage damage demonstrates that CTX-II is a sensitive diagnostic tool for monitoring joint disease in the rodent model of CIA. Furthermore, the immunohistochemical findings are consistent with the concept that the major source of serum CTX-II is the damaged articular cartilage.


Assuntos
Artrite Experimental/sangue , Artrite Experimental/patologia , Cartilagem Articular/patologia , Colágeno Tipo I/sangue , Peptídeos/sangue , Animais , Colágeno , Modelos Animais de Doenças , Feminino , Articulações/patologia , Ratos , Ratos Endogâmicos Lew
11.
Mol Carcinog ; 44(3): 219-22, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16167349

RESUMO

The nuclear transcription factor of activated T cells (NFAT) suggested to be a tumor suppressor. Here we report that two out of three NFATc3-/- and two in four NFATc3 +/- female mice developed aggressive mammary adenocarcinoma by 12.5 and 16 mo of age, respectively, with no occurrences in age-matched wild-type littermates (N-14). Thus, our data suggest that NFATc3 can suppress the development of mammary gland tumors in female mice.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Envelhecimento/fisiologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Fatores de Transcrição NFATC/deficiência , Fatores de Transcrição NFATC/metabolismo , Adenocarcinoma/genética , Animais , Transformação Celular Neoplásica , Feminino , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA