Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Liposome Res ; : 1-15, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459750

RESUMO

Recently, metformin (Met) has shown to have antineoplastic properties in cancer treatment by improving hypoxic tumor conditions, and causing reduction in the synthesis of biomolecules, which are vital for cancer growth. However, as an orally administered drug, Met has low bioavailability and rapid renal clearance. Thus, the goal of this study was to vectorize Met inside liposomes in the context of triple negative breast cancer (TNBC), which currently lacks treatment options when compared to other types of breast cancer. Vectorization of Met inside liposomes was done using Bangham method by implementing double design of experiment methodology to increase Met drug loading (minimum-run resolution V characterization design and Box-Behnken design), as it is generally extremely low for hydrophilic molecules. Optimization of Met-loaded liposome synthesis was successfully achieved with drug loading of 190 mg/g (19% w/w). The optimal Met-liposomes were 170 nm in diameter with low PdI (< 0.1) and negative surface charge (-20 mV), exhibiting sustained Met release at pH 7.4. The liposomal Met delivery system was stable over several months, and successfully reduced TNBC cell proliferation due to the encapsulated drug. This study is one the first reports addressing liposome formulation through thin-film hydration using two design of experiment methods aiming to increase drug loading of Met.

2.
Int J Pharm ; 632: 122335, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36283640

RESUMO

This article was withdrawn from International Journal of Pharmaceutics in order to be published in International Journal of Pharmaceutics: X. The Publisher apologizes for any inconvenience this may cause.

3.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36558904

RESUMO

In this work, lipid-based nanoparticles (LBNP) were designed to combine tyrosine kinase inhibitor (TKI) Lapatinib (LAPA) with siRNA directed against apoptosis inhibitor protein Survivin (siSurvivin) in an injectable form. This nanosystem is based on lipid nanocapsules (LNCs) coated with a cationic polymeric shell composed of chitosan grafted through a transacylation reaction. The hydrophobic LAPA is solubilized in the inner oily core, while hydrophilic siRNA is associated electrostatically onto the nanocarrier's surface. The co-loaded LBNP showed a narrow size distribution (polydispersity index (PDI) < 0.3), a size of 130 nm, and a slightly positive zeta potential (+21 mV). LAPA and siRNA were loaded in LBNP at a high rate of >90% (10.6 mM) and 100% (4.6 µM), respectively. The siRNA-LAPA_LBNP was readily uptaken by the human epidermal growth factor receptor 2 overexpressed (HER2+) breast cancer cell line SK-BR-3. Moreover, the cytotoxicity studies confirmed that the blank chitosan decorated LBNP is not toxic to the cells with the tested concentrations, which correspond to LAPA concentrations from 1 to 10 µM, at different incubation times up to 96 h. Furthermore, siCtrl.-LAPA_LBNP had a more cytotoxic effect than Lapatinib salt, while siSurvivin-LAPA_LBNP had a significant synergistic cytotoxic effect compared to siCtrl.-LAPA_LBNP. All these findings suggested that the developed modified LBNP could potentiate anti-Survivin siRNA and LAPA anti-cancer activity.

4.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559172

RESUMO

Following our previous study on the development of EGFR-targeted nanomedicine (NM-scFv) for the active delivery of siRNA in EGFR-positive cancers, this study focuses on the development and the quality control of a radiolabeling method to track it in in vivo conditions with nuclear imaging. Our NM-scFv is based on the electrostatic complexation of targeted nanovector (NV-scFv), siRNA and two cationic polymers. NV-scFv comprises an inorganic core, a fluorescent dye, a polymer layer and anti-EGFR ligands. To track NM-scFv in vivo with nuclear imaging, the DTPA chemistry was used to radiolabel NM-scFv with 111In. DTPA was thiolated and introduced onto NV-scFv via the maleimide chemistry. To obtain suitable radiolabeling efficiency, different DTPA/NV-scFv ratios were tested, including 0.03, 0.3 and 0.6. At the optimized ratio (where the DTPA/NV-scFv ratio was 0.3), a high radiolabeling yield was achieved (98%) and neither DTPA-derivatization nor indium-radiolabeling showed any impact on NM-scFv's physicochemical characteristics (DH ~100 nm, PDi < 0.24). The selected NM-scFv-DTPA demonstrated good siRNA protection capacity and comparable in vitro transfection efficiency into EGFR-overexpressing cells in comparison to that of non-derivatized NM-scFv (around 67%). Eventually, it was able to track both qualitatively and quantitatively NM-scFv in in vivo environments with nuclear imaging. Both the radiolabeling and the NM-scFv showed a high in vivo stability level. Altogether, a radiolabeling method using DTPA chemistry was developed with success in this study to track our NM-scFv in in vivo conditions without any impact on its active targeting and physicochemical properties, highlighting the potential of our NM-scFv for future theranostic applications in EGFR-overexpressing cancers.

5.
Pharmaceutics ; 14(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432729

RESUMO

According to Globocan 2020, breast cancer is considered one of the most common cancers affecting women and is one of the leading causes of death in over 100 countries. The available classical treatment options do not always give satisfactory outcomes, and some patients develop resistance to these treatments. This study aims to investigate the combination of nanovectorized siRNA directed against anti-apoptotic protein Survivin (siSurvivin) by targeted stealth magnetic siRNA nanovectors (TS-MSN), designed in our lab, with Doxorubicin (DOX), as an option for HER2+ breast cancer treatment. The hypothesis is that the pretreatment of the HER2+ breast cancer cell line SK-BR-3 with siSurvivin will induce apoptosis in the cancer cells and enhance the therapeutic efficacy of DOX, allowing a dose reduction of DOX and hence a reduction of potential side effects. TS-MSN are based on superparamagnetic iron oxide nanoparticles (SPIONs) covalently coupled with a fluorophore sulfocyanine-5 and polyethylene glycol 5000 (PEG5000) and functionalized with single-chain variable fragments (scFv) of an antibody targeting the HER2 membrane receptor. These covalently functionalized SPIONs are then complexed via electrostatic interactions with therapeutic siRNA and the cationic polymers, chitosan, and poly-L-arginine. TS-MSNsiSurvivin had an average size of 144 ± 30 nm, a PDI of 0.3, and a slightly positive zeta potential value of 10.56 ± 05.70 mV. The agarose gel electrophoresis assay confirmed that the siRNA is well-complexed into TS-MSN without leakage, as no free siRNA was detected. Moreover, siRNA in TS-MSN was protected from RNAse A degradation for up to 6 h at 37 °C. Formulations of TS-MSN with siSurvivin demonstrated in vitro gene knockdown up to 89% in the HER2+ breast cancer cell line SK-BR-3. Furthermore, qRT-PCR confirmed a significant Survivin mRNA relative expression inhibition (about 50%) compared to control siRNA or untreated cells. A combination protocol was evaluated between TS-MSN and Doxorubicin (DOX) for the first time. Therefore, SK-BR-3 cells were pretreated with TS-MSN formulated with siSurvivin at 50 nM for 24 h alone, before a DOX treatment at a concentration of 0.5 µM (corresponding to the IC50) was added for 48 h. The MTT cytotoxicity tests, performed after 72 h of treatment, revealed that the combination had a significant synergistic cytotoxic effect on SK-BR-3 cells compared to monotherapies or untreated cells. We confirmed that pretreatment of cells with siSurvivin potentializes the cytotoxic effect of DOX as an alternative approach for treating HER2+ breast cancer. In conclusion, a combination of anti-Survivin siRNA and DOX would be a good alternative in HER2+ breast cancer therapy.

6.
Int J Pharm X ; 4: 100139, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420371

RESUMO

Apoptosis is an important process that directly affects the response of cancer cells to anticancer drugs. Among different factors involved in this process, the BcL-xL protein plays a critical role in inhibiting apoptosis induced by chemotherapy agents. Henceforth, its downregulation may have a synergistic activity that lowers the necessary dose of anticancer agents. In this study, anti-Bcl-xL siRNA were formulated within an EGFR-targeted nanomedicine with scFv ligands (NM-scFv) and its activity was tested in the non-small cell lung cancer (NSCLC) cell line H460. The obtained NMs-scFv anti-Bcl-xL were suitable for intravenous injection with sizes around 100 nm, a high monodispersity level and good siRNA complexation capacity. The nanocomplex's functionalization with anti-EGFR scFv ligands was shown to allow an active gene delivery into H460 cells and led to approximately 63% of gene silencing at both mRNA and protein levels. The NM-scFv anti-Bcl-xL improved the apoptotic activity of cisplatin and reduced the cisplatin IC50 value in H460 cells by a factor of around three from 0.68 ± 0.12 µM to 2.21 ± 0.18 µM (p < 0.01), respectively, in comparison to that of NM-scFv formulated with control siRNA (p > 0.05).

7.
Int J Pharm X ; 4: 100126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36147518

RESUMO

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

8.
Bull Cancer ; 109(10): 1094-1100, 2022 Oct.
Artigo em Francês | MEDLINE | ID: mdl-35995612

RESUMO

The thirteenth edition of the workshop focused on the last developments on oncologic imaging techniques. Our goal was purposely large, consisting in bringing together chemists, biologists, physicists, pharmacists and physicians to discuss these imaging developments. The meeting focused in four main topics: i) the evolution of imaging modalities such as photoacoustic or the latest PET (positrons emission tomography) imaging progress; ii) the improvements in imaging process; iii) the numerous contributions of chemistry towards medical imaging and iv) novel approaches of nuclear medicine in therapeutic monitoring strategies and theranostic aspects.


Assuntos
Medicina Nuclear , Tomografia Computadorizada por Raios X , Biomarcadores , Humanos , Imageamento por Ressonância Magnética/métodos , Oncologia , Tomografia por Emissão de Pósitrons
9.
Pharmaceutics ; 14(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893800

RESUMO

Self-assembled peptides possess remarkable potential as targeted drug delivery systems and key applications dwell anti-cancer therapy. Peptides can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions (pH, temperature, ionic strength). Herein, we investigated the development of self-assembled peptide-based nanofibers (NFs) with the inclusion of a cell-penetrating peptide (namely gH625) and a matrix metalloproteinase-9 (MMP-9) responsive sequence, which proved to enhance respectively the penetration and tumor-triggered cleavage to release Doxorubicin in Triple Negative Breast Cancer cells where MMP-9 levels are elevated. The NFs formulation has been optimized via critical micelle concentration measurements, fluorescence, and circular dichroism. The final nanovectors were characterized for morphology (TEM), size (hydrodynamic diameter), and surface charge (zeta potential). The Doxo loading and release kinetics were studied in situ, by optical microspectroscopy (fluorescence and surface-enhanced Raman scattering-SERS). Confocal spectral imaging of the Doxo fluorescence was used to study the TNBC models in vitro, in cells with various MMP-9 levels, the drug delivery to cells as well as the resulting cytotoxicity profiles. The results confirm that these NFs are a promising platform to develop novel nanovectors of Doxo, namely in the framework of TNBC treatment.

10.
Talanta ; 250: 123692, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777345

RESUMO

Raman Spectroscopy is well emerged in the field of Analytical Quality Control (AQC) as a rapid and cost-effective technique useful in many applications. The advantage of Raman spectroscopy is the non-invasiveness of measurements that enablesto analyse samples directly in its container. In this study, the potential of Raman spectroscopy was investigated for analysis of clinical preparations of mAbs. Three commercial formulations of monoclonal antibodies (mAbs) Avastin®, Ontruzant® and Tecentriq® corresponding to Bevacizumab (BVC), Trastuzumab (TRS) and Atezolizumab (ATZ) respectively, were analysed in quartz cuvette in macroscopic analysis and through the wall of perfusion bags in microscopic analysis. The spectra have been compared to those of excipients (trehalose and sucrose) and of γ-Globulin, in order to investigate the origin of Raman bands. As expected, Raman spectra were a combination of bands from monoclonal antibodies and correspoding excipients found in formulas. For quantitative analysis of the solutions, models have been constructed using Partial Least Square Regression (PLSR) with Leave K-Out Cross Validation (LKOCV). The quantification performance was comparable for both macroscopic and microscopic analysis, in terms of error and linearity. The results are thus promising for future AQC in situ, in perfusion bags.


Assuntos
Antineoplásicos Imunológicos , Excipientes , Anticorpos Monoclonais/análise , Bevacizumab , Excipientes/química , Quartzo , Análise Espectral Raman/métodos , Sacarose , Trastuzumab , Trealose , gama-Globulinas
11.
Pharmaceutics ; 14(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745807

RESUMO

Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.

12.
RSC Adv ; 12(12): 7179-7188, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424703

RESUMO

MicroRNAs (miRs) belong to a family of short non-coding endogenous RNAs. Their over-expression correlates with various pathologies: for instance, miRNA-155 (miR-155) is over-expressed upon the development of breast cancers. However, the detection of miRs as disease biomarkers suffers from insufficient sensitivity. In the present study, we propose a protocol for a rapid and efficient generation of magnetic nanoprobes able to capture miR-155, with the aim of increasing its concentration. As a nanoprobe precursor, we first synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coated with covalently attached polyethylene glycol carrying a free biotin terminus (PEG-bi). Using streptavidin-biotin interactions, the nanoprobes were formulated by functionalizing the surface of the nanoparticles with the miR sequence (CmiR) complementary to the target miR-155 (TmiR). The two-step formulation was optimized and validated using several analytical techniques, in particular with Size-Exclusion High Performance Liquid Chromatography (SE-HPLC). Finally, the proof of the nanoprobe affinity to TmiR was made by demonstrating the TmiR capture on model solutions, with the estimated ratio of 18 : 22 TmiR : CmiR per nanoprobe. The nanoprobes were confirmed to be stable after incubation in serum.

13.
Int J Pharm ; 609: 121134, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34571073

RESUMO

As active targeting using nanomedicines establishes itself as a strategy of choice in cancer therapy, several target receptors or ligands overexpressed in cancer cells have been identified and exploited. Among them, the epidermal growth factor receptor (EGFR) has emerged as one of the most promising oncomarkers for active targeting nanomedicines due to its overexpression and its active involvement in a wide range of cancer types. Henceforth, many novel EGFR-targeted nanomedicines for cancer therapy have been developed, giving encouraging results both in vitro and in vivo. This review focuses on different applications of such medicines in oncotherapy. On an important note, the contribution of EGFR-targeting ligands to final therapy efficacy along with current challenges and possible solutions or alternatives are emphasized.


Assuntos
Nanomedicina , Neoplasias , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Receptores ErbB , Humanos , Ligantes , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico
14.
Int J Pharm ; 605: 120795, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119579

RESUMO

Recently, active targeting using nanocarriers with biological ligands has emerged as a novel strategy for improving the delivery of therapeutic and/or imaging agents to tumor cells. The presence of active targeting moieties on the surface of nanomedicines has been shown to play an important role in enhancing their accumulation in tumoral cells and tissues versus healthy ones. This property not only helps to increase the therapeutic index but also to minimize possible side effects of the designed nanocarriers. Since the overexpression of epidermal growth factor receptors (EGFR) is a common occurrence linked to the progression of a broad variety of cancers, the potential application of anti-EGFR immunotherapy and EGFR-targeting ligands in active targeting nanomedicines is getting increasing attention. Henceforth, the EGFR-targeted nanomedicines were extensively studied in vitro and in vivo but exhibited both satisfactory and disappointing results, depending on used protocols. This review is designed to give an overview of a variety of EGFR-targeting ligands available for nanomedicines, how to conjugate them onto the surface of nanoparticles, and the main analytical methods to confirm this successful conjugation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Família de Proteínas EGF/uso terapêutico , Humanos , Ligantes , Nanomedicina , Neoplasias/tratamento farmacológico , Controle de Qualidade
15.
Polymers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920816

RESUMO

Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.

16.
Talanta ; 228: 122137, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773705

RESUMO

Analytical Quality Control (AQC) in centralised preparation units of oncology centers is a common procedure relying on the identification and quantification of the prepared chemotherapeutic solutions for safe intravenous administration to patients. Although the use of Raman spectroscopy for AQC has gained much interest, in most applications it remains coupled to a flow injection analyser (FIA) requiring withdrawal of the solution for analysis. In addition to current needs for more rapid and cost-effective analysis, the risk of exposure of clinical staff to the toxic molecules during daily handling is a serious concern to address. Raman spectroscopic analysis, for instance by Confocal Raman Microscopy (CRM), could enable direct analysis (non-invasive) for AQC directly in infusion bags. In this study, 3 anticancer drugs, methotrexate (MTX), 5-fluorouracil (5-FU) and gemcitabine (GEM) have been selected to highlight the potential of CRM for withdrawal free analysis. Solutions corresponding to the clinical range of each drug were prepared in 5% glucose and data was collected from infusion bags placed under the Raman microscope. Firstly, 100% discrimination has been obtained by Partial Least Squares Discriminant Analysis (PLS-DA) confirming that the identification of drugs can be performed. Secondly, using Partial Least Squares Regression (PLSR), quantitative analysis was performed with mean % error of predicted concentrations of respectively 3.31%, 5.54% and 8.60% for MTX, 5-FU and GEM. These results are in accordance with the 15% acceptance criteria used for the current clinical standard technique, FIA, and the Limits of Detection for all drugs were determined to be substantially lower than the administered range, thus highlighting the potential of confocal Raman spectroscopy for direct analysis of chemotherapeutic solutions.


Assuntos
Antineoplásicos , Análise Espectral Raman , Análise Discriminante , Fluoruracila , Humanos , Análise dos Mínimos Quadrados , Controle de Qualidade
17.
J Pharm Biomed Anal ; 194: 113734, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243491

RESUMO

The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresponding respectively to cetuximab, rituximab, trastuzumab and bevacizumab have been used to highlight the key role of excipients in discrimination and quantification of the formulations. It is demonstrated that protein based anticancer drugs such as mAbs have a relatively weak Raman response, while excipients such as glycine, trehalose or histidine contribute significantly to the spectra. Multivariate analysis (partial least square regression and partial least square discriminant analysis) further demonstrates that the signatures of the mAbs themselves are not prominent in mathematical models and that those of the excipients are solely responsible for the differentiation of formulation and accurate determination of concentrations. While Raman spectroscopy can successfully validate the conformity of mAbs intravenous infusion solutions, the basis for the analysis should be considered, and special caution should be given to excipient compositions in commercial formulations to ensure reliability and reproducibility of the analysis.


Assuntos
Anticorpos Monoclonais , Análise Espectral Raman , Composição de Medicamentos , Excipientes , Reprodutibilidade dos Testes
18.
Eur J Pharm Biopharm ; 157: 74-84, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059006

RESUMO

A targeted nanomedicine with humanized anti-EGFR scFv (NM-scFv) was developed for siRNA delivery into triple negative breast cancer (TNBC) cells. NM-scFv consisted of i) targeted nanovector (NV-scFv): nano-cargo with targeting properties; ii) siRNA: pharmacological agent and iii) cationic polymers (chitosan, poly-L-arginine): for siRNA complexation and endosomal escape. NV-scFv was based on superparamagnetic nanoparticle (SPION) labeled with Dylight™680, a PEG layer and a humanized anti-EGFR scFv. The PEG density was optimized from 236 ± 3 to 873 ± 4 PEGs/NV-scFv and the number of targeting ligands per NV-scFv was increased from 9 to 13. This increase presented a double benefit: i) enhanced cellular internalization by a factor of 2.0 for a 24 h incubation time and ii) few complement protein consumption reflecting a greater stealthiness (26.9 vs 45.3% of protein consumption at 150 µg of iron/mL of NHS). A design of experiments was performed to optimize the charge ratios of chitosan/siRNA (CS) and PLR/siRNA (CR) that influenced significantly: i) siRNA protection and ii) gene silencing effect. With optimal ratios (CS = 10 and CR = 10), anti-GFP siRNA was completely complexed and the transfection efficiency of NM-scFv was 69.4% vs 25.3% for non-targeted NM. These results demonstrated the promising application of our NM-scFv for the targeted siRNA delivery into TNBC cells.


Assuntos
Marcação de Genes , Nanomedicina , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Anticorpos de Cadeia Única/metabolismo , Transfecção , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Quitosana/química , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Nanopartículas , Peptídeos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Anticorpos de Cadeia Única/química , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo
19.
Pharmaceuticals (Basel) ; 12(4)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810248

RESUMO

Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by chemical bioconjugation methods. The most frequent labelling technique to generate antibody-fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen binding, or mAb properties. The lack of information on labelling kits and the incomplete characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly analyzed by mass spectroscopy, and their antigen binding properties were studied. We then compared these AFCs in vitro by studying their respective spectral properties and stabilities. The shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account for the design of any biological study involving antibody labelling.

20.
Analyst ; 144(17): 5207-5214, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31355390

RESUMO

A methodology is proposed, based on Raman spectroscopy coupled with multivariate analysis, to determine the Limit of Detection (LOD) and Limit of Quantification (LOQ) for therapeutic drug monitoring in human serum, using the examples of Busulfan, a cell cycle non-specific alkylating antineoplastic agent, and, Methotrexate, a chemotherapeutic agent and immune system suppressant. In this study, ultrafiltration is employed to fractionate spiked human pooled serum to efficiently recover the drug in the filtrate prior to performing Raman analysis. The drug concentration ranges were chosen to encompass the recommended therapeutic ranges and toxic levels in patients. Raman spectra were collected from the filtrates in the liquid form, using an inverted backscattering microscopic geometry, using 532 nm as source. Finally, prediction models were built by using Partial Least Squares Regression (PLSR) and LOD and LOQ were calculated directly from the linear prediction models. The LOD calculated for Busulfan is 0.0002 ± 0.0001 mg mL-1, 30-40 times lower than the level of toxicity, enabling the application of this method in target dose adjustment of Busulfan for patients undergoing, for example, bone marrow transplantation. The LOD and LOQ calculated for Methotrexate are 7.8 ± 5 µM and 26 ± 5 µM, respectively, potentially enabling high dose monitoring. The promising results obtained from this study suggest the potential of Raman spectroscopy for therapeutic drug monitoring of drugs in bodily fluids.


Assuntos
Bussulfano/sangue , Metotrexato/sangue , Antineoplásicos/sangue , Monitoramento de Medicamentos/métodos , Humanos , Análise dos Mínimos Quadrados , Limite de Detecção , Análise Multivariada , Agonistas Mieloablativos/sangue , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA