Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235454

RESUMO

miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1ß but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.


Assuntos
MicroRNAs , Animais , Camundongos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
2.
Sci Rep ; 14(1): 10939, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740871

RESUMO

Long non-coding RNAs (lncRNAs) represent an emerging class of genes which play significant and diverse roles in human cancers. Nevertheless, the functional repertoires of lncRNAs in cancer cell subtypes remains unknown since most studies are focused on protein coding genes. Here, we explored the contribution of lncRNAs in Colorectal Cancer (CRC) heterogeneity. We analyzed 49'436 single-cells from 29 CRC patients and showed that lncRNAs are significantly more cell type specific compared to protein-coding genes. We identified 996 lncRNAs strongly enriched in epithelial cells. Among these, 98 were found to be differentially expressed in tumor samples compared to normal controls, when integrating 270 bulk CRC profiles. We validated the upregulation of two of them (CASC19 and LINC00460) in CRC cell lines and showed their involvement in CRC proliferation by CRISPR-Cas9 knock down experiments. This study highlights a list of novel RNA targets for potential CRC therapeutics, substantiated through experimental validation.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Transcriptoma , Humanos , RNA Longo não Codificante/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proliferação de Células/genética
3.
NPJ Precis Oncol ; 8(1): 95, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658785

RESUMO

Machine learning (ML) models of drug sensitivity prediction are becoming increasingly popular in precision oncology. Here, we identify a fundamental limitation in standard measures of drug sensitivity that hinders the development of personalized prediction models - they focus on absolute effects but do not capture relative differences between cancer subtypes. Our work suggests that using z-scored drug response measures mitigates these limitations and leads to meaningful predictions, opening the door for sophisticated ML precision oncology models.

4.
Gene ; 874: 147481, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37182560

RESUMO

Despite the advances in bone fracture treatment, a significant fraction of fracture patients will develop non-union. Most non-unions are treated with surgery since identifying the molecular causes of these defects is exceptionally challenging. In this study, compared with marrow bone, we generated a transcriptional atlas of human osteoprogenitor cells derived from healing callus and non-union fractures. Detailed comparison among the three conditions revealed a substantial similarity of callus and nonunion at the gene expression level. Nevertheless, when assayed functionally, they showed different osteogenic potential. Utilizing longitudinal transcriptional profiling of the osteoprogenitor cells, we identified FOS as a putative master regulator of non-union fractures. We validated FOS activity by profiling a validation cohort of 31 tissue samples. Our work identified new molecular targets for non-union classification and treatment while providing a valuable resource to better understand human bone healing biology.


Assuntos
Calo Ósseo , Consolidação da Fratura , Humanos , Consolidação da Fratura/genética , Calo Ósseo/metabolismo , Osteogênese/genética
5.
Nat Commun ; 14(1): 2214, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072390

RESUMO

Bladder Cancer (BLCa) inter-patient heterogeneity is the primary cause of treatment failure, suggesting that patients could benefit from a more personalized treatment approach. Patient-derived organoids (PDOs) have been successfully used as a functional model for predicting drug response in different cancers. In our study, we establish PDO cultures from different BLCa stages and grades. PDOs preserve the histological and molecular heterogeneity of the parental tumors, including their multiclonal genetic landscapes, and consistently share key genetic alterations, mirroring tumor evolution in longitudinal sampling. Our drug screening pipeline is implemented using PDOs, testing standard-of-care and FDA-approved compounds for other tumors. Integrative analysis of drug response profiles with matched PDO genomic analysis is used to determine enrichment thresholds for candidate markers of therapy response and resistance. Finally, by assessing the clinical history of longitudinally sampled cases, we can determine whether the disease clonal evolution matched with drug response.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Organoides/patologia
6.
Cell Genom ; 2(9): 100171, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36778670

RESUMO

Long noncoding RNAs (lncRNAs) are widely dysregulated in cancer, yet their functional roles in cancer hallmarks remain unclear. We employ pooled CRISPR deletion to perturb 831 lncRNAs detected in KRAS-mutant non-small cell lung cancer (NSCLC) and measure their contribution to proliferation, chemoresistance, and migration across two cell backgrounds. Integrative analysis of these data outperforms conventional "dropout" screens in identifying cancer genes while prioritizing disease-relevant lncRNAs with pleiotropic and background-independent roles. Altogether, 80 high-confidence oncogenic lncRNAs are active in NSCLC, which tend to be amplified and overexpressed in tumors. A follow-up antisense oligonucleotide (ASO) screen shortlisted two candidates, Cancer Hallmarks in Lung LncRNA 1 (CHiLL1) and GCAWKR, whose knockdown consistently suppressed cancer hallmarks in two- and three-dimension tumor models. Molecular phenotyping reveals that CHiLL1 and GCAWKR control cellular-level phenotypes via distinct transcriptional networks. This work reveals a multi-dimensional functional lncRNA landscape underlying NSCLC that contains potential therapeutic vulnerabilities.

7.
Cell Mol Life Sci ; 79(1): 1, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910257

RESUMO

Intestinal mesenchymal cells encompass multiple subsets, whose origins, functions, and pathophysiological importance are still not clear. Here, we used the Col6a1Cre mouse, which targets distinct fibroblast subsets and perivascular cells that can be further distinguished by the combination of the CD201, PDGFRα and αSMA markers. Developmental studies revealed that the Col6a1Cre mouse also targets mesenchymal aggregates that are crucial for intestinal morphogenesis and patterning, suggesting an ontogenic relationship between them and homeostatic PDGFRαhi telocytes. Cell depletion experiments in adulthood showed that Col6a1+/CD201+ mesenchymal cells regulate homeostatic enteroendocrine cell differentiation and epithelial proliferation. During acute colitis, they expressed an inflammatory and extracellular matrix remodelling gene signature, but they also retained their properties and topology. Notably, both in homeostasis and tissue regeneration, they were dispensable for normal organ architecture, while CD34+ mesenchymal cells expanded, localised at the top of the crypts, and showed increased expression of villous-associated morphogenetic factors, providing thus evidence for the plasticity potential of intestinal mesenchymal cells. Our results provide a comprehensive analysis of the identities, origin, and functional significance of distinct mesenchymal populations in the intestine.


Assuntos
Colágeno Tipo VI/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Intestinos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/patologia , Colágeno Tipo VI/deficiência , Colágeno Tipo VI/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Intestinos/citologia , Intestinos/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regeneração
8.
J Transl Med ; 19(1): 165, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892739

RESUMO

BACKGROUND: New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS: We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS: Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION: Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


Assuntos
Antirreumáticos , Artrite Reumatoide , Dasatinibe , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Animais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Dasatinibe/uso terapêutico , Humanos , Infliximab/uso terapêutico , Camundongos
9.
Nucleic Acids Res ; 47(W1): W523-W529, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31147707

RESUMO

Interest in the biological roles of long noncoding RNAs (lncRNAs) has resulted in growing numbers of studies that produce large sets of candidate genes, for example, differentially expressed between two conditions. For sets of protein-coding genes, ontology and pathway analyses are powerful tools for generating new insights from statistical enrichment of gene features. Here we present the LnCompare web server, an equivalent resource for studying the properties of lncRNA gene sets. The Gene Set Feature Comparison mode tests for enrichment amongst a panel of quantitative and categorical features, spanning gene structure, evolutionary conservation, expression, subcellular localization, repetitive sequences and disease association. Moreover, in Similar Gene Identification mode, users may identify other lncRNAs by similarity across a defined range of features. Comprehensive results may be downloaded in tabular and graphical formats, in addition to the entire feature resource. LnCompare will empower researchers to extract useful hypotheses and candidates from lncRNA gene sets.


Assuntos
RNA Longo não Codificante/genética , Software , Genes , Genes Neoplásicos , Humanos , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo
10.
PLoS Comput Biol ; 15(5): e1006933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071076

RESUMO

Anti-TNF agents have been in the first line of treatment of various inflammatory diseases such as Rheumatoid Arthritis and Crohn's Disease, with a number of different biologics being currently in use. A detailed analysis of their effect at transcriptome level has nevertheless been lacking. We herein present a concise analysis of an extended transcriptomics profiling of four different anti-TNF biologics upon treatment of the established hTNFTg (Tg197) mouse model of spontaneous inflammatory polyarthritis. We implement a series of computational analyses that include clustering of differentially expressed genes, functional analysis and random forest classification. Taking advantage of our detailed sample structure, we devise metrics of treatment efficiency that take into account changes in gene expression compared to both the healthy and the diseased state. Our results suggest considerable variability in the capacity of different biologics to modulate gene expression that can be attributed to treatment-specific functional pathways and differential preferences to restore over- or under-expressed genes. Early intervention appears to manage inflammation in a more efficient way but is accompanied by increased effects on a number of genes that are seemingly unrelated to the disease. Administration at an early stage is also lacking in capacity to restore healthy expression levels of under-expressed genes. We record quantifiable differences among anti-TNF biologics in their efficiency to modulate over-expressed genes related to immune and inflammatory pathways. More importantly, we find a subset of the tested substances to have quantitative advantages in addressing deregulation of under-expressed genes involved in pathways related to known RA comorbidities. Our study shows the potential of transcriptomic analyses to identify comprehensive and distinct treatment-specific gene signatures combining disease-related and unrelated genes and proposes a generalized framework for the assessment of drug efficacy, the search of biosimilars and the evaluation of the efficacy of TNF small molecule inhibitors.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite/genética , Perfilação da Expressão Gênica/métodos , Adalimumab/farmacologia , Animais , Artrite/tratamento farmacológico , Medicamentos Biossimilares , Certolizumab Pegol/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Infliximab/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Nat Commun ; 10(1): 1405, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926812

RESUMO

Lung adenocarcinoma (LUAD)-derived Wnts increase cancer cell proliferative/stemness potential, but whether they impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. In TCGA, Wnt1 correlates strongly with tolerogenic genes. In another LUAD cohort, Wnt1 inversely associates with T cell abundance. Altering Wnt1 expression profoundly affects growth of murine lung adenocarcinomas and this is dependent on conventional dendritic cells (cDCs) and T cells. Mechanistically, Wnt1 leads to transcriptional silencing of CC/CXC chemokines in cDCs, T cell exclusion and cross-tolerance. Wnt-target genes are up-regulated in human intratumoral cDCs and decrease upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-nanoparticles given as single therapy or part of combinatorial immunotherapies act at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 induces immunologically cold tumors through cDCs and highlight its immunotherapeutic targeting.


Assuntos
Imunidade Adaptativa , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Quimiocinas/genética , Células Dendríticas/metabolismo , Inativação Gênica , Proteína Wnt1/metabolismo , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Humanos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , Interferência de RNA , Transdução de Sinais , Linfócitos T/metabolismo , Regulação para Cima
12.
J Immunol ; 201(5): 1558-1569, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037849

RESUMO

Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Fumar Cigarros/imunologia , Neoplasias Pulmonares/imunologia , Enfisema Pulmonar/imunologia , Transferência Adotiva , Animais , Fumar Cigarros/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Enfisema Pulmonar/fisiopatologia
13.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618659

RESUMO

Mesenchymal TNF signaling is etiopathogenic for inflammatory diseases such as rheumatoid arthritis and spondyloarthritis (SpA). The role of Tnfr1 in arthritis has been documented; however, Tnfr2 functions are unknown. Here, we investigate the mesenchymal-specific role of Tnfr2 in the TnfΔARE mouse model of SpA in arthritis and heart valve stenosis comorbidity by cell-specific, Col6a1-cre-driven gene targeting. We find that TNF/Tnfr2 signaling in resident synovial fibroblasts (SFs) and valvular interstitial cells (VICs) is detrimental for both pathologies, pointing to common cellular mechanisms. In contrast, systemic Tnfr2 provides protective signaling, since its complete deletion leads to severe deterioration of both pathologies. SFs and VICs lacking Tnfr2 fail to acquire pathogenic activated phenotypes and display increased expression of antiinflammatory cytokines associated with decreased Akt signaling. Comparative RNA sequencing experiments showed that the majority of the deregulated pathways in TnfΔARE mesenchymal-origin SFs and VICs, including proliferation, inflammation, migration, and disease-specific genes, are regulated by Tnfr2; thus, in its absence, they are maintained in a quiescent nonpathogenic state. Our data indicate a pleiotropy of Tnfr2 functions, with mesenchymal Tnfr2 driving cell activation and arthritis/valve stenosis pathogenesis only in the presence of systemic Tnfr2, whereas nonmesenchymal Tnfr2 overcomes this function, providing protective signals and, thus, containing both pathologies.


Assuntos
Estenose da Valva Aórtica/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Espondilartrite/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Espondilartrite/complicações , Espondilartrite/genética , Espondilartrite/patologia , Membrana Sinovial/citologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Ann Rheum Dis ; 77(6): 926-934, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475857

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis and spondyloarthritisshow higher mortality rates, mainly caused by cardiac comorbidities. The TghuTNF (Tg197) arthritis model develops tumour necrosis factor (TNF)-driven and mesenchymalsynovial fibroblast (SF)-dependent polyarthritis. Here, we investigate whether this model develops, similarly to human patients, comorbid heart pathology and explore cellular and molecular mechanisms linking arthritis to cardiac comorbidities. METHODS: Histopathological analysis and echocardiographic evaluation of cardiac function were performed in the Tg197 model. Valve interstitial cells (VICs) were targeted by mice carrying the ColVI-Cretransgene. Tg197 ColVI-Cre Tnfr1fl/fl and Tg197 ColVI-Cre Tnfr1cneo/cneo mutant mice were used to explore the role of mesenchymal TNF signalling in the development of heart valve disease. Pathogenic VICs and SFs were further analysed by comparative RNA-sequencing analysis. RESULTS: Tg197 mice develop left-sided heart valve disease, characterised by valvular fibrosis with minimal signs of inflammation. Thickened valve areas consist almost entirely of hyperproliferative ColVI-expressing mesenchymal VICs. Development of pathology results in valve stenosis and left ventricular dysfunction, accompanied by arrhythmic episodes and, occasionally, valvular regurgitation. TNF dependency of the pathology was indicated by disease modulation following pharmacological inhibition or mesenchymal-specific genetic ablation or activation of TNF/TNFR1 signalling. Tg197-derived VICs exhibited an activated phenotype ex vivo, reminiscent of the activated pathogenic phenotype of Tg197-derived SFs. Significant functional similarities between SFs and VICs were revealed by RNA-seq analysis, demonstrating common cellular mechanisms underlying TNF-mediated arthritides and cardiac comorbidities. CONCLUSIONS: Comorbidheart valve disease and chronic polyarthritis are efficiently modelled in the Tg197 arthritis model and share common TNF/TNFR1-mediated, mesenchymal cell-specific aetiopathogenic mechanisms.


Assuntos
Artrite Experimental/imunologia , Doenças das Valvas Cardíacas/imunologia , Células-Tronco Mesenquimais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Valva Aórtica/patologia , Doença Crônica , Feminino , Fibrose , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/patologia , Masculino , Camundongos Mutantes , Valva Mitral/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Disfunção Ventricular Esquerda/etiologia
15.
Arthritis Rheumatol ; 69(8): 1588-1600, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28409894

RESUMO

OBJECTIVE: Aberrant activation of synovial fibroblasts is a key determinant in the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to produce a map of gene expression and epigenetic changes occurring in this cell type during disease progression in the human tumor necrosis factor (TNF)-transgenic model of arthritis and to identify commonalities with human synovial fibroblasts. METHODS: We used deep sequencing to probe the transcriptome, the methylome, and the chromatin landscape of cultured mouse arthritogenic synovial fibroblasts at 3 stages of disease, as well as synovial fibroblasts stimulated with human TNF. We performed bioinformatics analyses at the gene, pathway, and network levels, compared mouse and human data, and validated selected genes in both species. RESULTS: We found that synovial fibroblast arthritogenicity was reflected in distinct dynamic patterns of transcriptional dysregulation, which was especially enriched in pathways of the innate immune response and mesenchymal differentiation. A functionally representative subset of these changes was associated with methylation, mostly in gene bodies. The arthritogenic state involved highly active promoters, which were marked by histone H3K4 trimethylation. There was significant overlap between the mouse and human data at the level of dysregulated genes and to an even greater extent at the level of pathways. CONCLUSION: This study is the first systematic examination of the pathogenic changes that occur in mouse synovial fibroblasts during progressive TNF-driven arthritogenesis. Significant correlations with the respective human RA synovial fibroblast data further validate the human TNF-transgenic mouse as a reliable model of the human disease. The resource of data generated in this work may serve as a framework for the discovery of novel pathogenic mechanisms and disease biomarkers.


Assuntos
Artrite Reumatoide/genética , Epigênese Genética/genética , Fibroblastos/metabolismo , Expressão Gênica/genética , Fator de Necrose Tumoral alfa/genética , Adulto , Idoso , Animais , Células Cultivadas , Biologia Computacional , Metilação de DNA , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA