RESUMO
INTRODUCTION: High grade astrocytic glioma (HGG) is a lethal solid malignancy with high recurrence rates and limited survival. While several cytotoxic agents have demonstrated efficacy against HGG, drug sensitivity testing platforms to aid in therapy selection are lacking. Patient-derived organoids (PDOs) have been shown to faithfully preserve the biological characteristics of several cancer types including HGG, and coupled with the experimental-analytical hybrid platform Quadratic Phenotypic Optimization Platform (QPOP) which evaluates therapeutic sensitivity at a patient-specific level, may aid as a tool for personalized medical decisions to improve treatment outcomes for HGG patients. METHODS: This is an interventional, non-randomized, open-label study, which aims to enroll 10 patients who will receive QPOP-guided chemotherapy at the time of first HGG recurrence following progression on standard first-line therapy. At the initial presentation of HGG, tumor will be harvested for primary PDO generation during the first biopsy/surgery. At the point of tumor recurrence, patients will be enrolled onto the main study to receive systemic therapy as second-line treatment. Subjects who undergo surgery at the time of recurrence will have a second harvest of tissue for PDO generation. Established PDOs will be subject to QPOP analyses to determine their therapeutic sensitivities to specific panels of drugs. A QPOP-guided treatment selection algorithm will then be used to select the most appropriate drug combination. The primary endpoint of the study is six-month progression-free survival. The secondary endpoints include twelve-month overall survival, RANO criteria and toxicities. In our radiological biomarker sub-study, we plan to evaluate novel radiopharmaceutical-based neuroimaging in determining blood-brain barrier permeability and to assess in vivo drug effects on tumor vasculature over time. TRIAL REGISTRATION: This trial was registered on 8th September 2022 with ClinicalTrials.gov Identifier: NCT05532397.
Assuntos
Neoplasias Encefálicas , Recidiva Local de Neoplasia , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Astrocitoma/tratamento farmacológico , Astrocitoma/patologia , Astrocitoma/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Gradação de Tumores , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/diagnóstico por imagem , Ensaios Clínicos como AssuntoRESUMO
The 15th annual Frontiers in Cancer Science (FCS) conference gathered scientific experts who shared the latest research converging upon several themes of cancer biology. These themes included the dysregulation of metabolism, cell death, and other signaling processes in cancer cells; using patient "omics" datasets and single-cell and spatial approaches to investigate heterogeneity, understand therapy resistance, and identify targets; innovative strategies for inhibiting tumors, including rational drug combinations and improved drug delivery mechanisms; and advances in models that can facilitate screening for cancer vulnerabilities and drug testing. We hope the insights from this meeting will stimulate further progress in the field.
Assuntos
Neoplasias , Pesquisa , Humanos , Morte Celular , Sistemas de Liberação de Medicamentos , Neoplasias/terapiaRESUMO
Globally, colorectal cancer (CRC) is the third most frequently occurring cancer. Progression on to an advanced metastatic malignancy (metCRC) is often indicative of poor prognosis, as the 5-year survival rates of patients decline rapidly. Despite the availability of many systemic therapies for the management of metCRC, the long-term efficacies of these regimens are often hindered by the emergence of treatment resistance due to intratumoral and intertumoral heterogeneity. Furthermore, not all systemic therapies have associated biomarkers that can accurately predict patient responses. Hence, a functional personalised oncology (FPO) approach can enable the identification of patient-specific combinatorial vulnerabilities and synergistic combinations as effective treatment strategies. To this end, we established a panel of CRC patient-derived organoids (PDOs) as clinically relevant biological systems, of which three pairs of matched metCRC PDOs were derived from the primary sites (ptCRC) and metastatic lesions (mCRC). Histological and genomic characterisation of these PDOs demonstrated the preservation of histopathological and genetic features found in the parental tumours. Subsequent application of the phenotypic-analytical drug combination interrogation platform, Quadratic Phenotypic Optimisation Platform, in these pairs of PDOs identified patient-specific drug sensitivity profiles to epigenetic-based combination therapies. Most notably, matched PDOs from one patient exhibited differential sensitivity patterns to the rationally designed drug combinations despite being genetically similar. These findings collectively highlight the limitations of current genomic-driven precision medicine in guiding treatment strategies for metCRC patients. Instead, it suggests that epigenomic profiling and application of FPO could complement the identification of novel combinatorial vulnerabilities to target synchronous ptCRC and mCRC.
RESUMO
Metastatic porocarcinomas (PCs) are vanishingly rare, highly aggressive skin adnexal tumors with mortality rates exceeding 70%. Their rarity has precluded the understanding of their disease pathogenesis, let alone the conduct of clinical trials to evaluate treatment strategies. There are no effective agents for unresectable PCs. Here, we successfully demonstrate how functional precision medicine was implemented in the clinic for a metastatic PC with no known systemic treatment options. Comprehensive genomic profiling of the tumor specimen did not yield any actionable genomic aberrations. However, ex vivo drug testing predicted pazopanib efficacy, and indeed, administration of pazopanib elicited remarkable clinicoradiological response. Pazopanib and its class of drugs should be evaluated for efficacy in other cases of PC, and the rationale for efficacy should be determined when PC tumor models become available. A functional precision medicine approach could be useful to derive effective treatment options for rare cancers.
Assuntos
Indazóis , Medicina de Precisão , Neoplasias Cutâneas , Humanos , Sulfonamidas/uso terapêutico , Pirimidinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
Spalt-like transcription factor 4 (SALL4) is an oncofetal protein that has been identified to drive cancer progression in hepatocellular carcinoma (HCC) and hematological malignancies. Furthermore, a high SALL4 expression level is correlated to poor prognosis in these cancers. However, SALL4 lacks well-structured small-molecule binding pockets, making it difficult to design targeted inhibitors. SALL4-induced expression of oxidative phosphorylation (OXPHOS) genes may serve as a therapeutically targetable vulnerability in HCC through OXPHOS inhibition. Because OXPHOS functions through a set of genes with intertumoral heterogeneous expression, identifying therapeutic sensitivity to OXPHOS inhibitors may not rely on a single clear biomarker. Here, we developed a workflow that utilized molecular beacons, nucleic-acid-based, activatable sensors with high specificity to the target mRNA, delivered by nanodiamonds, to establish an artificial intelligence (AI)-assisted platform for rapid evaluation of patient-specific drug sensitivity. Specifically, when the HCC cells were treated with the nanodiamond-medicated OXPHOS biosensor, high sensitivity and specificity of the sensor allowed for improved identification of OXPHOS expression in cells. Assisted by a trained convolutional neural network, drug sensitivity of cells toward an OXPHOS inhibitor, IACS-010759, could be accurately predicted. AI-assisted OXPHOS drug sensitivity assessment could be accomplished within 1 day, enabling rapid and efficient clinical decision support for HCC treatment. The work proposed here serves as a foundation for the patient-based subtype-specific therapeutic research platform and is well suited for precision medicine.
Assuntos
Antineoplásicos , Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanodiamantes , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanodiamantes/uso terapêutico , Fosforilação Oxidativa , Inteligência Artificial , Antineoplásicos/uso terapêuticoRESUMO
Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/uso terapêutico , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MetilaçãoRESUMO
Deregulation of MYC is among the most frequent oncogenic drivers in hepatocellular carcinoma (HCC). Unfortunately, the clinical success of MYC-targeted therapies is limited. Synthetic lethality offers an alternative therapeutic strategy by leveraging on vulnerabilities in tumors with MYC deregulation. While several synthetic lethal targets of MYC have been identified in HCC, the need to prioritize targets with the greatest therapeutic potential has been unmet. Here, we demonstrate that by pairing splice-switch oligonucleotide (SSO) technologies with our phenotypic-analytical hybrid multidrug interrogation platform, quadratic phenotypic optimization platform (QPOP), we can disrupt the functional expression of these targets in specific combinatorial tests to rapidly determine target-target interactions and rank synthetic lethality targets. Our SSO-QPOP analyses revealed that simultaneous attenuation of CHK1 and BRD4 function is an effective combination specific in MYC-deregulated HCC, successfully suppressing HCC progression in vitro. Pharmacological inhibitors of CHK1 and BRD4 further demonstrated its translational value by exhibiting synergistic interactions in patient-derived xenograft organoid models of HCC harboring high levels of MYC deregulation. Collectively, our work demonstrates the capacity of SSO-QPOP as a target prioritization tool in the drug development pipeline, as well as the therapeutic potential of CHK1 and BRD4 in MYC-driven HCC.
RESUMO
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second leading cause of cancer worldwide. Despite approvals of several therapeutics to treat advanced HCC in the past few years, the impact of anti-angiogenic treatment on HCC patient overall survival remains limited. This suggests there may be alternative, perfusion-independent roles of endothelial cells that support tumor progression. Thus, we leveraged a well-defined hydrogel system to establish co-culture models to mimic and characterize the angiocrine crosstalk between HCC and endothelial cells in vitro. Co-cultures of HCC cell lines or patient-derived xenograft organoids with endothelial cells exhibited the upregulation of MCP-1, IL-8 and CXCL16, suggesting that the HCC-endothelial interactions established in our models recapitulate known angiocrine signaling. Additionally, by subjecting co-cultures and mono-cultures to RNA sequencing, transcriptomic analysis revealed an upregulation in the expression of genes associated with tumor necrosis factor (TNF) signaling, such as that of chemokines, suggesting that endothelial cells induce HCC cells to generate an inflammatory microenvironment by recruiting immune cells. Finally, HCC-endothelial angiocrine crosstalk in the co-culture models polarized macrophages towards a pro-inflammatory and pro-angiogenic phenotype, paralleling a tumor-associated macrophage subset previously reported in HCC. Together, these findings suggest that these HCC-endothelial co-culture models may serve as important models to understand and target the interplay between angiogenesis and the immune milieu.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Endoteliais/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Organoides/metabolismo , Microambiente TumoralRESUMO
Multiple three-dimensional (3D) tumour organoid models assisted by multi-omics and Artificial Intelligence (AI) have contributed greatly to preclinical drug development and precision medicine. The intrinsic ability to maintain genetic and phenotypic heterogeneity of tumours allows for the reconciliation of shortcomings in traditional cancer models. While their utility in preclinical studies have been well established, little progress has been made in translational research and clinical trials. In this review, we identify the major bottlenecks preventing patient-derived tumour organoids (PDTOs) from being used in clinical setting. Unsuitable methods of tissue acquisition, disparities in establishment rates and a lengthy timeline are the limiting factors for use of PDTOs in clinical application. Potential strategies to overcome this include liquid biopsies via circulating tumour cells (CTCs), an automated organoid platform and optical metabolic imaging (OMI). These proposed solutions accelerate and optimize the workflow of a clinical organoid drug screening. As such, PDTOs have the potential for potential applications in clinical oncology to improve patient outcomes. If remarkable progress is made, cancer patients can finally benefit from this revolutionary technology.
RESUMO
Small interfering RNA (siRNA) can cause specific gene silencing and is considered promising for treating a variety of cancers, including hepatocellular carcinoma (HCC). However, siRNA has many undesirable physicochemical properties that limit its application. Additionally, conventional methods for delivering siRNA are limited in their ability to penetrate solid tumors. In this study, nanodiamonds (NDs) were evaluated as a nanoparticle drug delivery platform for improved siRNA delivery into tumor cells. Our results demonstrated that ND-siRNA complexes could effectively be formed through electrostatic interactions. The ND-siRNA complexes allowed for efficient cellular uptake and endosomal escape that protects siRNA from degradation. Moreover, ND delivery of siRNA was more effective at penetrating tumor spheroids compared to liposomal formulations. This enhanced penetration capacity makes NDs ideal vehicles to deliver siRNA against solid tumor masses as efficient gene knockdown and decreased tumor cell proliferation were observed in tumor spheroids. Evaluation of ND-siRNA complexes within the context of a 3D cancer disease model demonstrates the potential of NDs as a promising gene delivery platform against solid tumors, such as HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanodiamantes , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Humanos , Lipossomos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , RNA Interferente PequenoRESUMO
Glioblastoma (GBM) is a uniformly lethal disease driven by glioma stem cells (GSCs). Here, we use a chemical biology approach to unveil previously unknown GBM dependencies. By studying sulconazole (SN) with anti-GSC properties, we find that SN disrupts biotin distribution to the carboxylases and histones. Transcriptomic and metabolomic analyses of SN-treated GSCs reveal metabolic alterations that are characteristic of biotin-deficient cells, including intracellular cholesterol depletion, impairment of oxidative phosphorylation, and energetic crisis. Furthermore, SN treatment reduces histone biotinylation, histone acetylation, and expression of superenhancer-associated GSC critical genes, which are also observed when biotin distribution is genetically disrupted by holocarboxylase synthetase (HLCS) depletion. HLCS silencing impaired GSC tumorigenicity in an orthotopic xenograft brain tumor model. In GBM, high HLCS expression robustly indicates a poor prognosis. Thus, the dependency of GBM on biotin distribution suggests that the rational cotargeting of biotin-dependent metabolism and epigenetic pathways may be explored for GSC eradication.
RESUMO
Despite numerous advances in cancer radiotherapy, tumor radioresistance remain one of the major challenges limiting treatment efficacy of radiotherapy. Conventional strategies to overcome radioresistance involve understanding the underpinning molecular mechanisms, and subsequently using combinatorial treatment strategies involving radiation and targeted drug combinations against these radioresistant tumors. These strategies exploit and target the molecular fingerprint and vulnerability of the radioresistant clones to achieve improved efficacy in tumor eradication. However, conventional drug-screening approaches for the discovery of new drug combinations have been proven to be inefficient, limited and laborious. With the increasing availability of computational resources in recent years, novel approaches such as Quadratic Phenotypic Optimization Platform (QPOP), CURATE.AI and Drug Combination and Prediction and Testing (DCPT) platform have emerged to aid in drug combination discovery and the longitudinally optimized modulation of combination therapy dosing. These platforms could overcome the limitations of conventional screening approaches, thereby facilitating the discovery of more optimal drug combinations to improve the therapeutic ratio of combinatorial treatment. The use of better and more accurate models and methods with rapid turnover can thus facilitate a rapid translation in the clinic, hence, resulting in a better patient outcome. Here, we reviewed the clinical observations, molecular mechanisms and proposed treatment strategies for tumor radioresistance and discussed how novel approaches may be applied to enhance drug combination discovery, with the aim to further improve the therapeutic ratio and treatment efficacy of radiotherapy against radioresistant cancers.
Assuntos
Inteligência Artificial/normas , Descoberta de Drogas/métodos , Neoplasias/radioterapia , Radioterapia (Especialidade)/métodos , Tolerância a Radiação/genética , Combinação de Medicamentos , HumanosRESUMO
Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.
Assuntos
Proteínas de Transporte/genética , Marcação de Genes , Edição de RNA , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Oligonucleotídeos Antissenso/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Deregulation of MYC is among the most frequent oncogenic drivers of cancer. Developing targeted therapies against MYC is, therefore, one of the most critical unmet needs of cancer therapy. Unfortunately, MYC has been labelled as undruggable due to the lack of success in developing clinically relevant MYC-targeted therapies. Synthetic lethality is a promising approach that targets MYC-dependent vulnerabilities in cancer. However, translating the synthetic lethality targets to the clinics is still challenging due to the complex nature of cancers. This review highlights the most promising mechanisms of MYC synthetic lethality and how these discoveries are currently translated into the clinic. Finally, we discuss how in silico computational platforms can improve clinical success of synthetic lethality-based therapy.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Mutações Sintéticas Letais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Proteínas Proto-Oncogênicas c-myc/genéticaRESUMO
Tumor-specific metabolic rewiring, acquired to confer a proliferative and survival advantage over nontransformed cells, represents a renewed focus in cancer therapy development. Hepatocellular carcinoma (HCC), a malignancy that has hitherto been resistant to compounds targeting oncogenic signaling pathways, represents a candidate cancer to investigate the efficacy of selectively antagonizing such adaptive metabolic reprogramming. To this end, we sought to characterize metabolic changes in HCC necessary for tumorigenesis. We analyzed gene expression profiles in three independent large-scale patient cohorts who had HCC. We identified a commonly deregulated purine metabolic signature in tumors with the extent of purine biosynthetic enzyme up-regulation correlated with tumor grade and a predictor of clinical outcome. The functional significance of enhanced purine metabolism as a hallmark in human HCC was then validated using a combination of HCC cell lines, patient-derived xenograft (PDX) organoids, and mouse models. Targeted ablation of purine biosynthesis by knockdown of the rate-limiting enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) or using the drug mycophenolate mofetil (MMF) reduced HCC proliferation in vitro and decreased the tumor burden in vivo. In comparing the sensitivities of PDX tumor organoids to MMF therapy, we found that HCC tumors defined by high levels of IMPDH and guanosine nucleosides were most susceptible to treatment. Mechanistically, a phosphoinositide 3-kinase (PI3K)-E2F transcription factor 1 (E2F1) axis coordinated purine biosynthetic enzyme expression, deregulation of which altered the activity of mitogen-activated protein kinase/RAS signaling. Simultaneously abolishing PI3K signaling and IMPDH activity with clinically approved inhibitors resulted in greatest efficacy in reducing tumor growth in a PDX mouse model. Conclusion: Enhanced purine metabolic activity regulated by PI3K pathway-dependent activation of E2F1 promotes HCC carcinogenesis, suggesting the potential for targeting purine metabolic reprogramming as a precision therapeutic strategy for patients with HCC.
RESUMO
BACKGROUND: Multiple myeloma is an incurable hematological malignancy characterized by a heterogeneous genetic and epigenetic landscape. Although a number of genetic aberrations associated with myeloma pathogenesis, progression and prognosis have been well characterized, the role of many epigenetic aberrations in multiple myeloma remain elusive. G9a, a histone methyltransferase, has been found to promote disease progression, proliferation and metastasis via diverse mechanisms in several cancers. A role for G9a in multiple myeloma, however, has not been previously explored. METHODS: Expression levels of G9a/EHMT2 of multiple myeloma cell lines and control cells Peripheral Blood Mononuclear Cells (PBMCs) were analyzed. Correlation of G9a expression and overall survival of multiple myeloma patients were analyzed using patient sample database. To further study the function of G9a in multiple myeloma, G9a depleted multiple myeloma cells were built by lentiviral transduction, of which proliferation, colony formation assays as well as tumorigenesis were measured. RNA-seq of G9a depleted multiple myeloma with controls were performed to explore the downstream mechanism of G9a regulation in multiple myeloma. RESULTS: G9a is upregulated in a range of multiple myeloma cell lines. G9a expression portends poorer survival outcomes in a cohort of multiple myeloma patients. Depletion of G9a inhibited proliferation and tumorigenesis in multiple myeloma. RelB was significantly downregulated by G9a depletion or small molecule inhibition of G9a/GLP inhibitor UNC0642, inducing transcription of proapoptotic genes Bim and BMF. Rescuing RelB eliminated the inhibition in proliferation and tumorigenesis by G9a depletion. CONCLUSIONS: In this study, we demonstrated that G9a is upregulated in most multiple myeloma cell lines. Furthermore, G9a loss-of-function analysis provided evidence that G9a contributes to multiple myeloma cell survival and proliferation. This study found that G9a interacts with NF-κB pathway as a key regulator of RelB in multiple myeloma and regulates RelB-dependent multiple myeloma survival. G9a therefore is a promising therapeutic target for multiple myeloma.
RESUMO
Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Fotoquimioterapia/instrumentação , Polietilenoglicóis/química , Tecnologia sem Fio , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camundongos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologiaRESUMO
BACKGROUND & AIMS: Hepatic resection and liver transplantation with adjuvant chemo- and radiotherapy are the mainstay of hepatocellular carcinoma (HCC) treatment, but the 5-year survival rate remains poor because of frequent recurrence and intrahepatic metastasis. Only sorafenib and lenvatinib are currently approved for the first-line treatment of advanced, unresected HCC, but they yield modest survival benefits. Thus, there is a need to identify new therapeutic targets to improve current HCC treatment modalities. METHODS: The HCC tumor model was generated by hydrodynamic transfection of AKT1 and ß-catenin (CTNNB1) oncogenes. Cancer cells with stemness properties were characterized following isolation using side population (SP) and CD44 surface markers by flow cytometry. The effect of Jak/Stat inhibitors was analyzed in vitro by using tumorsphere culture and in vivo using an allograft mouse model. RESULTS: Co-activation of both Wnt/ß-catenin and Akt/mTOR pathways was found in 14.4% of our HCC patient cohort. More importantly, these patients showed poorer survival than those with either Wnt/ß-catenin or Akt/mTOR pathway activation alone, demonstrating the clinical relevance of our study. In addition, we observed that Akt/ß-catenin tumors contained a subpopulation of cells with stem/progenitor-like characteristics identified through SP analysis and expression of the cancer stem cell-like marker CD44, which may contribute to tumor self-renewal and drug resistance. Consequently, we identified small molecule inhibitors of the Jak/Stat pathway that demonstrated efficacy in mitigating tumor proliferation and formation in Akt/ß-catenin-driven HCC. CONCLUSIONS: In conclusion, we have shown that Akt/ß-catenin tumors contain a subpopulation of tumor-initiating cells with stem/progenitor-like characteristics which can be effectively targeted with inhibitors of the Jak/Stat pathway, demonstrating that inhibition of the Jak/Stat pathway could be an alternative method to overcome drug resistance and effectively treat Akt/ß-catenin-driven HCC tumors. LAY SUMMARY: The prognosis for patients with hepatocellular carcinoma is poor, partly because of the lack of effective treatment options for those with more advanced disease. In this study, we identified a subpopulation of cancer cells with stem cell-like properties that were critical for tumor maintenance and growth in a mouse model of hepatocellular carcinoma. Through further experiments, we demonstrated that the Jak/Stat pathway is a promising therapeutic target in hepatocellular carcinoma.