Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 25: 100926, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33553688

RESUMO

Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7 -/- ) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7 -/- mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7 -/- mice. Furthermore, DOX-treated EC-Atg7 -/- mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC.

2.
JACC Cardiovasc Imaging ; 14(6): 1164-1173, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33454272

RESUMO

OBJECTIVES: This study sought to evaluate the effects of empagliflozin on extracellular volume (ECV) in individuals with type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD). BACKGROUND: Empagliflozin has been shown to reduce left ventricular mass index (LVMi) in patients with T2DM and CAD. The effects on myocardial ECV are unknown. METHODS: This was a prespecified substudy of the EMPA-HEART (Effects of Empagliflozin on Cardiac Structure in Patients with Type 2 Diabetes) CardioLink-6 trial in which 97 participants were randomized to receive empagliflozin 10 mg daily or placebo for 6 months. Data from 74 participants were included: 39 from the empagliflozin group and 35 from the placebo group. The main outcome was change in left ventricular ECV from baseline to 6 months determined by cardiac magnetic resonance (CMR). Other outcomes included change in LVMi, indexed intracellular compartment volume (iICV) and indexed extracellular compartment volume (iECV), and the fibrosis biomarkers soluble suppressor of tumorgenicity (sST2) and matrix metalloproteinase (MMP)-2. RESULTS: Baseline ECV was elevated in the empagliflozin group (29.6 ± 4.6%) and placebo group (30.6 ± 4.8%). Six months of empagliflozin therapy reduced ECV compared with placebo (adjusted difference: -1.40%; 95% confidence interval [CI]: -2.60 to -0.14%; p = 0.03). Empagliflozin therapy reduced iECV (adjusted difference: -1.5 ml/m2; 95% CI: -2.6 to -0.5 ml/m2; p = 0.006), with a trend toward reduction in iICV (adjusted difference: -1.7 ml/m2; 95% CI: -3.8 to 0.3 ml/m2; p = 0.09). Empagliflozin had no impact on MMP-2 or sST2. CONCLUSIONS: In individuals with T2DM and CAD, 6 months of empagliflozin reduced ECV, iECV, and LVMi. No changes in MMP-2 and sST2 were seen. Further investigation into the mechanisms by which empagliflozin causes reverse remodeling is required. (Effects of Empagliflozin on Cardiac Structure in Patients With Type 2 Diabetes [EMPA-HEART]; NCT02998970).


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Compostos Benzidrílicos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Humanos , Valor Preditivo dos Testes
3.
Life Sci ; 260: 118216, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768582

RESUMO

AIMS: Doxorubicin (DOX) is a potent anticancer drug with severe dose-dependent cardiotoxicity. To address this issue, previous research primarily focused on DOX-induced toxicity on cardiomyocytes. However, more recent research has looked into the endothelium as a therapeutic target due to the emerging role of endothelial cells in the support of cardiomyocyte survival and function. MAIN METHODS: We investigated a novel role of endothelial cell (EC) primary cilia in the prevention of DOX-mediated cardiotoxicity. Mice lacking EC primary cilia, via the deletion of EC-specific intraflagellar protein 88 (IFT88) expression, were administered DOX (20 mg/kg i.p.), and assessed for survival, cardiac function, cardiac structure changes, and indices of cardiomyocyte injury. KEY FINDINGS: DOX-treatment resulted in reduced survival and cardiac function (ejection fraction and fractional shortening) in EC-IFT88-/- mice vs. their similarly treated wild-type littermates. Cardiomyocyte vacuolization, cardiac fibrosis, and serum CK-MB levels were also increased in DOX-treated mice compared to saline-treated controls. However, these parameters were not significantly different when comparing WT and EC-IFT88-/- mice after DOX treatment. SIGNIFICANCE: The loss of EC primary cilia accelerated DOX-mediated mortality and reduced cardiac function, suggesting pathways downstream of ciliary-mediated signal transduction as potential targets to promote EC support of cardiomyocyte function during DOX treatment.


Assuntos
Cílios/fisiologia , Doxorrubicina/toxicidade , Células Endoteliais/fisiologia , Cardiopatias/induzido quimicamente , Proteínas Supressoras de Tumor/fisiologia , Animais , Cruzamentos Genéticos , Células Endoteliais/ultraestrutura , Cardiopatias/fisiopatologia , Cardiopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Supressoras de Tumor/deficiência
4.
J Thorac Cardiovasc Surg ; 157(1): 185-193, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195591

RESUMO

BACKGROUND: We sought to determine if endothelial autophagy affects myocardial energy metabolism. METHODS: We used isolated working mouse hearts to compare cardiac function, energy metabolism, and ischemic response of hearts from endothelial cell-specific ATG7 knockout (EC-ATG7-/-) mice to hearts from their wild-type littermates. We also conducted gene analyses on human umbilical vein endothelial cells incubated with scrambled small interfering RNA or small interfering ATG7. RESULTS: In the presence of insulin, working hearts from EC-ATG7-/- mice, relative to those from wild-type littermates, exhibited greater reductions in insulin-associated palmitate oxidation indicating a diminished reliance on fatty acids as a fuel source. Likewise, palmitate oxidation was markedly lower in the hearts of EC-ATG7-/- mice versus wild-type mice during reperfusion of ischemic hearts. Although hearts from EC-ATG7-/- mice revealed significantly lower triacylglycerol content compared with those from wild-type mice, ATG7-silenced human umbilical vein endothelial cells demonstrated appreciably lower fatty acid binding protein 4 and 5 expression relative to those treated with scrambled small interfering RNA. CONCLUSIONS: Disruption of endothelial autophagy reduces cardiac fatty acid storage and dampens reliance on fatty acid oxidation as a cardiac fuel source. The autophagy network represents a novel target for designing new strategies aimed at resetting perturbed myocardial bioenergetics.


Assuntos
Autofagia , Endotélio Vascular/metabolismo , Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Oxirredução , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Endotélio Vascular/fisiologia , Metabolismo Energético , Masculino , Camundongos , Camundongos Knockout , Palmitatos/metabolismo , Triglicerídeos/metabolismo
5.
JACC Basic Transl Sci ; 3(6): 861-870, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30623145

RESUMO

The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.

6.
BMC Med Genet ; 18(1): 61, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28576136

RESUMO

BACKGROUND: The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. METHODS: We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. RESULTS: APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. CONCLUSION: The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC gene alter the protein expression and cell cycle regulation in diffuse type gastric adenocarcinoma.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Polipose Adenomatosa do Colo/diagnóstico , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , Regulação para Baixo , Éxons , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de DNA , Neoplasias Gástricas/diagnóstico , Adulto Jovem
7.
Circ Cardiovasc Genet ; 10(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28196902

RESUMO

BACKGROUND: Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient (Hyal2-/- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2-/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. METHODS AND RESULTS: Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2-/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2-/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2-/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2-/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. CONCLUSIONS: These data demonstrate that disruption of normal HA catabolism in Hyal2-/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure.


Assuntos
Cardiopatias Congênitas/enzimologia , Insuficiência Cardíaca/enzimologia , Hialuronoglucosaminidase/deficiência , Células-Tronco Mesenquimais/enzimologia , Disfunção Ventricular Esquerda/enzimologia , Animais , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células , Progressão da Doença , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Doenças das Valvas Cardíacas/enzimologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/fisiopatologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Fenótipo , Volume Sistólico , Fatores de Tempo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
8.
Histochem Cell Biol ; 145(1): 53-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515055

RESUMO

Hyaluronidase 2 (HYAL2) is a membrane-anchored protein that is proposed to initiate the degradation of hyaluronan (HA) in the extracellular matrix. The distribution of HYAL2 in tissues, and of HA in tissues lacking HYAL2, is largely unexplored despite the importance of HA metabolism in several disease processes. Herein, we use immunoblot and histochemical analyses to detect HYAL2 and HA in mouse tissues, as well as agarose gel electrophoresis to examine the size of HA. HYAL2 was detected in all tissues that were examined, including the brain. It was localized to the surface and cytoplasm of endothelial cells, as well as specialized epithelial cells in several tissues, including the skin. Accumulated HA, often of higher molecular mass than that in control tissues, was detected in tissues from Hyal2 (-/-) mice. The accumulating HA was located near to where HYAL2 is normally found, although in some tissues, it was distant from the site of HYAL2 localization. Overall, HYAL2 was highest in tissues that remove HA from the circulation (liver, lymph node and spleen), but the levels of HA accumulation in Hyal2 (-/-) mice were highest in tissues that catabolize locally synthesized HA. Our results support HYAL2's role as an extracellular enzyme that initiates HA breakdown in somatic tissues. However, our findings also suggest that HYAL2 contributes to HA degradation through other routes, perhaps as a soluble or secreted form.


Assuntos
Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/biossíntese , Hialuronoglucosaminidase/farmacocinética , Animais , Eletroforese em Gel de Ágar/métodos , Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/farmacocinética , Hialuronoglucosaminidase/genética , Immunoblotting/métodos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Knockout
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 144: 148-54, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25754390

RESUMO

A new trinuclear zinc(II) complex, [Zn3(L)(NCS)2](NO3)2·CH3OH·H2O (1), of a (N,O)-donor compartmental Schiff base ligand (H2L=N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-propanol), has been synthesized in crystalline phase. The zinc(II) complex has been characterized by elemental analysis, IR spectroscopy, UV-Vis spectroscopy, powder X-ray diffraction study (PXRD), (1)H NMR, EI mass spectrometry and thermogravimetric analysis. PXRD revealed that 1 crystallizes in P-1 space group with a=9.218 Å, b=10.849 Å, c=18.339 Å, with unit cell volume is 2179.713(Å)(3). Fluorescence spectra in methanolic solution reflect that intensity of emission for 1 is much higher compared to H2L and both the compounds exhibit good fluorescence properties. The complex 1 exhibits significant catalytic activities of biological relevance, viz. catechol oxidase. In methanol, it efficiently catalyzes the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to corresponding quinone via formation of a dinuclear species as [Zn2(L)(3,5-DTBC)]. Electron Paramagnetic Resonance (EPR) experiment suggests generation of radicals in the presence of 3,5-DTBC and it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complex of redox-innocent Zn(II) ion.


Assuntos
Catecol Oxidase/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Luminescência , Modelos Moleculares , Zinco/metabolismo , Catecóis/química , Catecóis/metabolismo , Complexos de Coordenação/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Oxirredução , Pós , Soluções , Solventes , Espectrometria de Fluorescência , Termogravimetria , Difração de Raios X
10.
Mol Ther ; 23(3): 414-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25515709

RESUMO

G(M2) gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in ß-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb(-/-)) of the G(M2) gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or -LacZ and monitored for serum ß-hexosaminidase activity, motor function, and survival. Brain G(M2) ganglioside, ß-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB-treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB-treated mice had a significant increase in brain ß-hexosaminidase activity, and a reduction in G(M2) ganglioside storage and neuroinflammation compared to adult SD-HexB- and SD-LacZ-treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other G(M2) gangliosidoses through early rAAV9 based systemic gene therapy.


Assuntos
Dependovirus/genética , Gangliosídeo G(M2)/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Doença de Sandhoff/terapia , Cadeia beta da beta-Hexosaminidase/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/efeitos adversos , Inflamação/genética , Inflamação/mortalidade , Inflamação/patologia , Inflamação/terapia , Injeções Intravenosas , Óperon Lac , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Lisossomos/enzimologia , Lisossomos/patologia , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Doença de Sandhoff/genética , Doença de Sandhoff/mortalidade , Doença de Sandhoff/patologia , Análise de Sobrevida , Cadeia beta da beta-Hexosaminidase/metabolismo
11.
J Phys Chem B ; 110(46): 22995-9, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107135

RESUMO

In recent years, there have been great experimental and theoretical advances in the understanding of the epoxidation of propylene by O(2) and H(2) over Au supported on titanium-containing oxidic supports; however, thus far spectroscopic evidence of reacting species for proposed mechanisms has been lacking. Hydroperoxide species have been postulated as an intermediate responsible for the epoxidation of propylene with O(2) and H(2). In order to obtain direct evidence for the different type of active oxygen species, in situ UV-vis and EPR measurements were carried out during the epoxidation of propylene with O(2) and H(2) over a Au/Ti-SiO(2) (Ti/Si = 3:100) catalyst. It was determined that the adsorbed species of oxygen (O(2)(-)) resided on Au, more likely at a perimeter site, and it led to the formation of titanium hydroperoxo species. These results support the possible mechanism of formation of these hydroperoxo species via H(2)O(2) produced from O(2) and H(2) adsorbed on the Au surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA