Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(9): e12502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39221546

RESUMO

The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.


Assuntos
Aptâmeros de Nucleotídeos , Biomarcadores Tumorais , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores Tumorais/metabolismo , Polarização de Fluorescência/métodos , Linhagem Celular Tumoral , Neoplasias/metabolismo
2.
Nanoscale ; 16(24): 11457-11479, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856692

RESUMO

Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.


Assuntos
Aptâmeros de Nucleotídeos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias/terapia , Neoplasias/metabolismo , Animais , Imunoterapia , Comunicação Celular
3.
Biosens Bioelectron ; 258: 116381, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744116

RESUMO

Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Receptor ErbB-2 , Vesículas Extracelulares/química , Humanos , Ligantes , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia
4.
Biomolecules ; 12(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358973

RESUMO

Doxorubicin is the most frequently used chemotherapeutic agent for the treatment of hepatocellular carcinoma. However, one major obstacle to the effective management of liver cancer is the drug resistance derived from the cancer stem cells. Herein, we employed a CD133 aptamer for targeted delivery of doxorubicin into liver cancer stem cells to overcome chemoresistance. Furthermore, we explored the efficacy of autophagy inhibition to sensitize liver cancer stem cells to the treatment of CD133 aptamer-doxorubicin conjugates based on the previous observation that doxorubicin contributes to the survival of liver cancer stem cells by activating autophagy. The kinetics and thermodynamics of aptamer-doxorubicin binding, autophagy induction, cell apoptosis, and self-renewal of liver cancer stem cells were studied using isothermal titration calorimetry, Western blot analysis, annexin V assay, and tumorsphere formation assay. The aptamer-cell binding andintracellular accumulation of doxorubicin were quantified via flow cytometry. CD133 aptamer-guided delivery of doxorubicin resulted in a higher doxorubicin concentration in the liver cancer stem cells. The combinatorial treatment strategy of CD133 aptamer-doxorubicin conjugates and an autophagy inhibitor led to an over 10-fold higher elimination of liver cancer stem cells than that of free doxorubicin in vitro. Future exploration of cancer stem cell-targeted delivery of doxorubicin in conjunction with autophagy inhibition in vivo may well lead to improved outcomes in the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Doxorrubicina/química , Células-Tronco Neoplásicas/metabolismo , Autofagia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA