Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927713

RESUMO

Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.


Assuntos
Carcinogênese , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Carcinogênese/genética , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais
2.
Lab Chip ; 22(22): 4349-4358, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36239125

RESUMO

Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.


Assuntos
Candida albicans , Pseudomonas aeruginosa , Microfluídica , Biofilmes
3.
Cells ; 10(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810313

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.


Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Benzoatos/uso terapêutico , Diferenciação Celular , Células Eritroides/patologia , Hidrazinas/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pirazóis/uso terapêutico , Anemia de Diamond-Blackfan/genética , Animais , Sequência de Bases , Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Eritroides/efeitos dos fármacos , Eritropoese , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Pirazóis/farmacologia
4.
Genetics ; 211(2): 531-547, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30546002

RESUMO

The Dam1 complex is an essential component of the outer kinetochore that mediates attachments between spindle microtubules and chromosomes. Dam1p, a subunit of the Dam1 complex, binds to microtubules and is regulated by Aurora B/Ipl1p phosphorylation. We find that overexpression of cAMP-dependent protein kinase (PKA) catalytic subunits (i.e., TPK1, TPK2, TPK3) is lethal in DAM1 mutants and increases the rate of chromosome loss in wild-type cells. Replacing an evolutionarily conserved PKA site (S31) in Dam1p with a nonphosphorylatable alanine suppressed the high-copy PKA dosage lethality in dam1-1 Consistent with Dam1p as a target of PKA, we find that in vitro PKA can directly phosphorylate S31 in Dam1p and we observed phosphorylation of S31 in Dam1p purified from asynchronously growing yeast cells. Cells carrying high-copy TPK2 or a Dam1p phospho-mimetic S31D mutant displayed a reduction in Dam1p localization at the kinetochore, suggesting that PKA phosphorylation plays a role in assembly and/or stability of the Dam1 complex. Furthermore, we observed spindle defects associated with S31 phosphorylation. Finally, we find that phosphorylation of Dam1p on S31 is reduced when glucose is limiting as well as during α-factor arrest, conditions that inhibit PKA activity. These observations suggest that the PKA site of Dam1p participates in regulating kinetochore activity. While PKA is a well-established effector of glucose signaling, our work shows for the first time that glucose-dependent PKA activity has an important function in chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Glucose/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
5.
PLoS Genet ; 7(9): e1002303, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980305

RESUMO

The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.


Assuntos
Instabilidade Cromossômica/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Centrômero/genética , Centrômero/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Biotechnol ; 29(6): 505-11, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21572441

RESUMO

Dosage suppression is a genetic interaction in which overproduction of one gene rescues a mutant phenotype of another gene. Although dosage suppression is known to map functional connections among genes, the extent to which it might illuminate global cellular functions is unclear. Here we analyze a network of interactions linking dosage suppressors to 437 essential genes in yeast. For 424 genes, we curated interactions from the literature. Analyses revealed that many dosage suppression interactions occur between functionally related genes and that the majority do not overlap with other types of genetic or physical interactions. To confirm the generality of these network properties, we experimentally identified dosage suppressors for 29 genes from pooled populations of temperature-sensitive mutant cells transformed with a high-copy molecular-barcoded open reading frame library, MoBY-ORF 2.0. We classified 87% of the 1,640 total interactions into four general types of suppression mechanisms, which provided insight into their relative frequencies. This work suggests that integrating the results of dosage suppression studies with other interaction networks could generate insights into the functional wiring diagram of a cell.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Supressão Genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Árvores de Decisões , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Essenciais , Genes Fúngicos , Sequenciamento de Nucleotídeos em Larga Escala , Cinetocoros/metabolismo , Mutação , Fases de Leitura Aberta , Fenótipo , Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
7.
Mol Cell Proteomics ; 10(3): M110.005199, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21169565

RESUMO

ß-methylthiolation is a novel post-translational modification mapping to a universally conserved Asp 88 of the bacterial ribosomal protein S12. This S12 specific modification has been identified on orthologs from multiple bacterial species. The origin and functional significance was investigated with both a proteomic strategy to identify candidate S12 interactors and expression microarrays to search for phenotypes that result from targeted gene knockouts of select candidates. Utilizing an endogenous recombinant E. coli S12 protein with an affinity tag as bait, mass spectrometric analysis identified candidate S12 binding partners including RimO (previously shown to be required for this post-translational modification) and YcaO, a conserved protein of unknown function. Transcriptomic analysis of bacterial strains with deleted genes for RimO and YcaO identified an overlapping transcriptional phenotype suggesting that YcaO and RimO likely share a common function. As a follow up, quantitative mass spectrometry additionally indicated that both proteins dramatically impacted the modification status of S12. Collectively, these results indicate that the YcaO protein is involved in ß-methylthiolation of S12 and its absence impairs the ability of RimO to modify S12. Additionally, the proteomic data from this study provides direct evidence that the E. coli specific ß-methylthiolation likely occurs when S12 is assembled as part of a ribosomal subunit.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Fenótipo , Ligação Proteica , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/química , Transcrição Gênica
8.
J Biol Chem ; 279(3): 2273-80, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14561744

RESUMO

Based on the role of phosphorylation of the histone H2A variant H2AX in recruitment of DNA repair and checkpoint proteins to the sites of DNA damage, we have investigated gammaH2AX as a reporter of tumor radiosensitivity and a potential target to enhance the effectiveness of radiation therapy. Clinically relevant ionizing radiation (IR) doses induced similar patterns of gammaH2AX focus formation or immunoreactivity in radiosensitive and radioresistant human tumor cell lines and xenografted tumors. However, radiosensitive tumor cells and xenografts retained gammaH2AX for a greater duration than radioresistant cells and tumors. These results suggest that persistence of gammaH2AX after IR may predict tumor response to radiotherapy. We synthesized peptide mimics of the H2AX carboxyl-terminal tail to test whether antagonizing H2AX function affects tumor cell survival following IR. The peptides did not alter the viability of unirradiated tumor cells, but both blocked induction of gammaH2AX foci by IR and enhanced cell death in irradiated radioresistant tumor cells. These results suggest that H2AX is a potential molecular target to enhance the effects of radiotherapy.


Assuntos
Histonas/metabolismo , Neoplasias/radioterapia , Tolerância a Radiação , Animais , Sobrevivência Celular/efeitos da radiação , Histonas/antagonistas & inibidores , Humanos , Camundongos , Fosforilação
9.
J Biol Chem ; 277(47): 44870-6, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12244097

RESUMO

All eukaryotic organisms have mechanisms to adapt to changing metabolic conditions. The mammalian cell survival gene Bcl-x(L) enables cells to adapt to changes in cellular metabolism. To identify genes whose function can be substituted by Bcl-x(L) in a unicellular eukaryote, a genetic screen was performed using the yeast Saccharomyces cerevisiae. S. cerevisiae grows by anaerobic glycolysis when glucose is available, switching to oxidative phosphorylation when carbohydrate in the media becomes limiting (diauxic shift). Given that Bcl-x(L) appears to facilitate the switch from glycolytic to oxidative metabolism in mammalian cells, a library of yeast mutants was tested for the ability to efficiently undergo diauxic shift in the presence and absence of Bcl-x(L). Several mutants were identified that have a defect in growth when switched from a fermentable to a nonfermentable carbon source that is corrected by the expression of Bcl-x(L). These genes include the mitochondrial chaperonin TCM62, as well as previously uncharacterized genes. One of these uncharacterized genes, SVF1, promotes cell survival in mammalian cells in response to multiple apoptotic stimuli. The finding that TCM62 and the analogous human prohibitin gene also inhibit mammalian cell death following growth factor withdrawal implicates mitochondrial chaperones as regulators of apoptosis. Further characterization of the genes identified in this screen may enhance our understanding of Bcl-x(L) function in mammalian cells, and of cell survival pathways in general.


Assuntos
Genes Fúngicos , Glicólise/fisiologia , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animais , Apoptose/fisiologia , Carbono/metabolismo , Linhagem Celular , Fermentação/fisiologia , Humanos , Interleucina-3/metabolismo , Camundongos , Mitocôndrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Proibitinas , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA