Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 110(10): 1681-1694, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762455

RESUMO

Skeletal muscle's combination of three-dimensional (3D) anisotropy and electrical excitability is critical for enabling normal movement. We previously developed a 3D aligned collagen scaffold incorporating conductive polypyrrole (PPy) particles to recapitulate these key muscle properties and showed that the scaffold facilitated enhanced myotube maturation compared with nonconductive controls. To further optimize this scaffold design, this work assessed the influence of conductive polymer incorporation and scaffold pore architecture on myogenic cell behavior. Conductive PPy and poly(3,4-ethylenedioxythiophene) (PEDOT) particles were synthesized and mixed into a suspension of type I collagen and chondroitin sulfate prior to directional freeze-drying to produce anisotropic scaffolds. Energy dispersive spectroscopy revealed homogenous distribution of conductive PEDOT particles throughout the scaffolds that resulted in a threefold increase in electrical conductivity while supporting similar myoblast metabolic activity compared to nonconductive scaffolds. Control of freezing temperature enabled fabrication of PEDOT-doped scaffolds with a range of pore diameters from 98 to 238 µm. Myoblasts conformed to the anisotropic contact guidance cues independent of pore size to display longitudinal cytoskeletal alignment. The increased specific surface area of the smaller pore scaffolds helped rescue the initial decrease in myoblast metabolic activity observed in larger pore conductive scaffolds while also promoting modestly increased expression levels of the myogenic marker myosin heavy chain (MHC) and gene expression of myoblast determination protein (MyoD). However, cell infiltration to the center of the scaffolds was marginally reduced compared with larger pore variants. Together these data underscore the potential of aligned and PEDOT-doped collagen scaffolds for promoting myogenic cell organization and differentiation.


Assuntos
Polímeros , Alicerces Teciduais , Diferenciação Celular , Colágeno , Condutividade Elétrica , Polímeros/química , Pirróis , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Biomater Sci ; 9(11): 4040-4053, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33899845

RESUMO

Skeletal muscle is characterized by its three-dimensional (3D) anisotropic architecture composed of highly aligned and electrically-excitable muscle fibers that enable normal movement. Biomaterial-based tissue engineering approaches to repair skeletal muscle are limited due to difficulties combining 3D structural alignment (to guide cell/matrix organization) and electrical conductivity (to enable electrically-excitable myotube assembly and maturation). In this work we successfully produced aligned and electrically conductive 3D collagen scaffolds using a freeze-drying approach. Conductive polypyrrole (PPy) nanoparticles were synthesized and directly mixed into a suspension of type I collagen and chondroitin sulfate followed by directional lyophilization. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and confocal microscopy showed that directional solidification resulted in scaffolds with longitudinally aligned pores with homogeneously-distributed PPy content. Chronopotentiometry verified that PPy incorporation resulted in a five-fold increase in conductivity compared to non-PPy-containing collagen scaffolds without detrimentally affecting myoblast metabolic activity. Furthermore, the aligned scaffold microstructure provided contact guidance cues that directed myoblast growth and organization. Incorporation of PPy also promoted enhanced myotube formation and maturation as measured by myosin heavy chain (MHC) expression and number of nuclei per myotube. Together these data suggest that aligned and electrically conductive 3D collagen scaffolds could be useful for skeletal muscle tissue engineering.


Assuntos
Polímeros , Engenharia Tecidual , Colágeno , Condutividade Elétrica , Músculo Esquelético , Pirróis , Alicerces Teciduais
3.
Neurourol Urodyn ; 39(2): 744-753, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945197

RESUMO

AIMS: Two phase 1 trials were performed in healthy women with the overactive bladder (OAB) syndrome and urodynamically demonstrated detrusor overactivity (DO), with the aim to demonstrate the safety and potential efficacy of URO-902, which comprises a gene therapy plasmid vector expressing the human big potassium channel α subunit. METHODS: ION-02 (intravesical instillation) and ION-03 (direct injection) were double-blind, placebo-controlled, multicenter studies without overlap in enrollment between studies. Active doses were administered and evaluated sequentially (lowest dose first) for safety. ION-02 participants received either 5000 µg or 10 000 µg URO-902, or placebo. ION-03 participants received either 16 000 or 24 000 µg URO-902, or placebo, injected directly into the bladder wall using cystoscopy. Primary outcome variables were safety parameters occurring subsequent to URO-902 administration; secondary efficacy variables also were evaluated. RESULTS: Among the safety outcomes, there were no dose-limiting toxicities or significant adverse events (AEs) preventing dose escalation during either trial, and no participants withdrew due to AEs. For efficacy, in ION-02 (N = 21), involuntary detrusor contractions on urodynamics at 24 weeks in patients receiving URO-902 (P < .0508 vs placebo) and mean urgency incontinence episodes in the 5000 µg group (P = .0812 vs placebo) each showed a downward trend. In ION-03 (N = 13), significant reduction versus placebo in urgency episodes (16 000 µg, P = .036; 24 000 µg, P = .046) and number of voids (16 000 µg, -2.16, P = .044; 24 000 µg, -2.73, P = .047) were observed 1 week after injection. CONCLUSION: Promising safety and efficacy results in these preliminary phase 1 studies suggest gene transfer may be a promising therapy for OAB/DO, warranting further investigation.


Assuntos
Terapia Genética/métodos , Bexiga Urinária Hiperativa/terapia , Administração Intravesical , Adulto , Idoso , Idoso de 80 Anos ou mais , Cistoscopia , DNA/administração & dosagem , DNA/uso terapêutico , Método Duplo-Cego , Feminino , Terapia Genética/efeitos adversos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/uso terapêutico , Pessoa de Meia-Idade , Segurança do Paciente , Resultado do Tratamento , Urodinâmica
4.
Artigo em Inglês | MEDLINE | ID: mdl-31275932

RESUMO

There is currently a substantial volume of research underway to develop more effective approaches for the regeneration of functional muscle tissue as treatment for volumetric muscle loss (VML) injury, but few studies have evaluated the relationship between injury and the biomechanics required for normal function. To address this knowledge gap, the goal of this study was to develop a novel method to quantify the changes in gait of rats with tibialis anterior (TA) VML injuries. This method should be sensitive enough to identify biomechanical and kinematic changes in response to injury as well as during recovery. Control rats and rats with surgically-created VML injuries were affixed with motion capture markers on the bony landmarks of the back and hindlimb and were recorded walking on a treadmill both prior to and post-surgery. Data collected from the motion capture system was exported for post-hoc analysis in OpenSim and Matlab. In vivo force testing indicated that the VML injury was associated with a significant deficit in force generation ability. Analysis of joint kinematics showed significant differences at all three post-surgical timepoints and gait cycle phase shifting, indicating augmented gait biomechanics in response to VML injury. In conclusion, this method identifies and quantifies key differences in the gait biomechanics and joint kinematics of rats with VML injuries and allows for analysis of the response to injury and recovery. The comprehensive nature of this method opens the door for future studies into dynamics and musculoskeletal control of injured gait that can inform the development of regenerative technologies focused on the functional metrics that are most relevant to recovery from VML injury.

5.
Muscle Nerve ; 59(5): 603-610, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681163

RESUMO

INTRODUCTION: Injuries to peripheral nerves cause distal muscle atrophy. The effects of adipose-derived stem cell (ASC) injections into a muscle after injury were examined. METHODS: A 1.5 cm defect in the rat sciatic nerve was created, resulting in gastrocnemius muscle atrophy. The nerve defect was repaired with autograft; DiR-labeled ASCs were injected into the gastrocnemius immediately postoperatively. Quantitation of gross musculature and muscle fiber area, cell survival, fibrosis, lipid deposition, inflammation, and reconstructive responses were investigated. RESULTS: ASCs were identified in the muscle at 6 weeks, where injections showed increased muscle mass percentage retained, larger average fiber area, and less overall lipid content accumulated throughout the musculature. Muscles having received ASCs showed increased presence of interlukin-10 and Ki67, and decreased inducible nitric oxide synthase (iNOS). DISCUSSION: This investigation is suggestive that an ASC injection into denervated muscle post-operatively is able to delay the onset of atrophy. Muscle Nerve 59:603-603, 2019.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Traumatismos dos Nervos Periféricos/patologia , Nervo Isquiático/lesões , Transplante de Células-Tronco , Células-Tronco , Animais , Distrofina/metabolismo , Imuno-Histoquímica , Interleucina-10/metabolismo , Antígeno Ki-67/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
6.
Biores Open Access ; 6(1): 35-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560089

RESUMO

Previous work demonstrated restoration of a bioequivalent bladder within 8 weeks of removing the majority of the bladder (subtotal cystectomy or STC) in rats. The goal of the present study was to extend our investigations of bladder repair to the murine model, to harness the power of mouse genetics to delineate the cellular and molecular mechanisms responsible for the observed robust bladder regrowth. Female C57 black mice underwent STC, and at 4, 8, and 12 weeks post-STC, bladder repair and function were assessed via cystometry, ex vivo pharmacologic organ bath studies, and T2-weighted magnetic resonance imaging (MRI). Histology was also performed to measure bladder wall thickness. We observed a time-dependent increase in bladder capacity (BC) following STC, such that 8 and 12 weeks post-STC, BC and micturition volumes were indistinguishable from those of age-matched non-STC controls and significantly higher than observed at 4 weeks. MRI studies confirmed that bladder volume was indistinguishable within 3 months (11 weeks) post-STC. Additionally, bladders emptied completely at all time points studied (i.e., no increases in residual volume), consistent with functional bladder repair. At 8 and 12 weeks post-STC, there were no significant differences in bladder wall thickness or in the different components (urothelium, lamina propria, or smooth muscle layers) of the bladder wall compared with age-matched control animals. The maximal contractile response to pharmacological activation and electrical field stimulation increased over time in isolated tissue strips from repaired bladders but remained lower at all time points compared with controls. We have established and validated a murine model for the study of de novo organ repair that will allow for further mechanistic studies of this phenomenon after, for example, genetic manipulation.

7.
Tissue Eng Part A ; 23(11-12): 572-584, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28162053

RESUMO

Wounds to the head, neck, and extremities have been estimated to account for ∼84% of reported combat injuries to military personnel. Volumetric muscle loss (VML), defined as skeletal muscle injuries in which tissue loss results in permanent functional impairment, is common among these injuries. The present standard of care entails the use of muscle flap transfers, which suffer from the need for additional surgery when using autografts or the risk of rejection when cadaveric grafts are used. Tissue engineering (TE) strategies for skeletal muscle repair have been investigated as a means to overcome current therapeutic limitations. In that regard, human hair-derived keratin (KN) biomaterials have been found to possess several favorable properties for use in TE applications and, as such, are a viable candidate for use in skeletal muscle repair. Herein, KN hydrogels with and without the addition of skeletal muscle progenitor cells (MPCs) and/or insulin-like growth factor 1 (IGF-1) and/or basic fibroblast growth factor (bFGF) were implanted in an established murine model of surgically induced VML injury to the latissimus dorsi (LD) muscle. Control treatments included surgery with no repair (NR) as well as implantation of bladder acellular matrix (BAM). In vitro muscle contraction force was evaluated at two months postsurgery through electrical stimulation of the explanted LD in an organ bath. Functional data indicated that implantation of KN+bFGF+IGF-1 (n = 8) enabled a greater recovery of contractile force than KN+bFGF (n = 8)***, KN+MPC (n = 8)**, KN+MPC+bFGF+IGF-1 (n = 8)**, BAM (n = 8)*, KN+IGF-1 (n = 8)*, KN+MPCs+bFGF (n = 9)*, or NR (n = 9)**, (*p < 0.05, **p < 0.01, ***p < 0.001). Consistent with the physiological findings, histological evaluation of retrieved tissue revealed much more extensive new muscle tissue formation in groups with greater functional recovery (e.g., KN+IGF-1+bFGF) when compared with observations in tissue from groups with lower functional recovery (i.e., BAM and NR). Taken together, these findings further indicate the general utility of KN biomaterials in TE and, moreover, specifically highlight their potential application in the treatment of VML injuries.


Assuntos
Portadores de Fármacos , Fator 2 de Crescimento de Fibroblastos , Hidrogéis , Fator de Crescimento Insulin-Like I , Queratinas , Músculo Esquelético , Regeneração/efeitos dos fármacos , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/farmacologia , Queratinas/química , Queratinas/farmacologia , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Suínos
8.
Tissue Eng Part A ; 23(11-12): 556-571, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28169594

RESUMO

Volumetric muscle loss (VML) injuries exceed the considerable intrinsic regenerative capacity of skeletal muscle, resulting in permanent functional and cosmetic deficits. VML and VML-like injuries occur in military and civilian populations, due to trauma and surgery as well as due to a host of congenital and acquired diseases/syndromes. Current therapeutic options are limited, and new approaches are needed for a more complete functional regeneration of muscle. A potential solution is human hair-derived keratin (KN) biomaterials that may have significant potential for regenerative therapy. The goal of these studies was to evaluate the utility of keratin hydrogel formulations as a cell and/or growth factor delivery vehicle for functional muscle regeneration in a surgically created VML injury in the rat tibialis anterior (TA) muscle. VML injuries were treated with KN hydrogels in the absence and presence of skeletal muscle progenitor cells (MPCs), and/or insulin-like growth factor 1 (IGF-1), and/or basic fibroblast growth factor (bFGF). Controls included VML injuries with no repair (NR), and implantation of bladder acellular matrix (BAM, without cells). Initial studies conducted 8 weeks post-VML injury indicated that application of keratin hydrogels with growth factors (KN, KN+IGF-1, KN+bFGF, and KN+IGF-1+bFGF, n = 8 each) enabled a significantly greater functional recovery than NR (n = 7), BAM (n = 8), or the addition of MPCs to the keratin hydrogel (KN+MPC, KN+MPC+IGF-1, KN+MPC+bFGF, and KN+MPC+IGF-1+bFGF, n = 8 each) (p < 0.05). A second series of studies examined functional recovery for as many as 12 weeks post-VML injury after application of keratin hydrogels in the absence of cells. A significant time-dependent increase in functional recovery of the KN, KN+bFGF, and KN+IGF+bFGF groups was observed, relative to NR and BAM implantation, achieving as much as 90% of the maximum possible functional recovery. Histological findings from harvested tissue at 12 weeks post-VML injury documented significant increases in neo-muscle tissue formation in all keratin treatment groups as well as diminished fibrosis, in comparison to both BAM and NR. In conclusion, keratin hydrogel implantation promoted statistically significant and physiologically relevant improvements in functional outcomes post-VML injury to the rodent TA muscle.


Assuntos
Hidrogéis , Queratinas , Músculo Esquelético , Regeneração/efeitos dos fármacos , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Queratinas/química , Queratinas/farmacologia , Masculino , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Ratos , Ratos Endogâmicos Lew
9.
Ann Biomed Eng ; 45(3): 747-760, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27718091

RESUMO

Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting muscle regeneration; however, the timing and duration of these interventions are difficult to determine. This study utilized a combination of in silico and in vivo experiments to investigate how inflammation manipulation improves muscle recovery following injury. First, we measured macrophage populations following laceration injury in the rat tibialis anterior (TA). Then we calibrated an agent-based model (ABM) of muscle injury to mimic the observed inflammation profiles. The calibrated ABM was used to simulate macrophage and satellite stem cell (SC) dynamics, and suggested that delivering macrophage colony stimulating factor (M-CSF) prior to injury would promote SC-mediated injury recovery. Next, we performed an experiment wherein 1 day prior to injury, we injected M-CSF into the rat TA muscle. M-CSF increased the number of macrophages during the first 4 days post-injury. Furthermore, treated muscles experienced a swifter increase in the appearance of PAX7+ SCs and regenerating muscle fibers. Our study suggests that computational models of muscle injury provide novel insights into cellular dynamics during regeneration, and further, that pharmacologically altering inflammation dynamics prior to injury can accelerate the muscle regeneration process.


Assuntos
Simulação por Computador , Lacerações , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos , Modelos Biológicos , Músculo Esquelético , Regeneração/efeitos dos fármacos , Células Satélites de Músculo Esquelético , Animais , Lacerações/tratamento farmacológico , Lacerações/metabolismo , Lacerações/patologia , Lacerações/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Ratos , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
10.
Front Pharmacol ; 7: 508, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123368

RESUMO

Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries.

11.
BMC Urol ; 15: 103, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463481

RESUMO

BACKGROUND: Restoration of normal bladder volume and function (i.e., bioequivalent bladder) are observed within 8 weeks of performing subtotal cystectomy (STC; removal of ~70 % of the bladder) in 12-week old rats. For analysis of bladder function in rodents, terminal urodynamic approaches are largely utilized. In the current study, we investigated the potential for Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans to noninvasively track restoration of structure and function following STC. METHODS: Twelve week old female Fisher F344 rats underwent STC and were scanned via CT and/or MRI 2, 4, 8, and 12 weeks post-STC, followed by urodynamic testing. After euthanasia, bladders were excised for histological processing. RESULTS: MRI scans demonstrated an initial decline followed by a time-dependent increase to normal bladder wall thickness (BWT) by 8 weeks post-STC. Masson's trichrome staining showed a lack of fibrosis post-STC, and also revealed that the percent of smooth muscle in the bladder wall at 2 and 4 weeks positively correlated with pre-operative baseline BWT. Moreover, increased BWT values before STC was predictive of improved bladder compliance at 2 and 4 weeks post-STC. Cystometric studies indicated that repeated MRI manipulation (i.e. bladder emptying) apparently had a negative impact on bladder capacity and compliance. A "window" of bladder volumes was identified 2 weeks post-STC via CT scanning that were commensurate with normal micturition pressures measured in the same animal 6 weeks later. CONCLUSIONS: Taken together, the data indicate some limitations of "non-invasive" imaging to provide insight into bladder regeneration. Specifically, mechanical manipulation of the bladder during MRI appears to negatively impact the regenerative process per se, which highlights the importance of terminal cystometric studies.


Assuntos
Cistectomia/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/fisiologia , Bexiga Urinária/cirurgia , Animais , Estudos de Viabilidade , Feminino , Masculino , Ratos , Ratos Endogâmicos F344 , Regeneração/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Bexiga Urinária/anatomia & histologia
12.
Stem Cell Res ; 15(1): 96-108, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26042793

RESUMO

Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in vitro. We discuss optimal conditions and parameters for effective hSSC/BMSC differentiation using EMF treatment in an in vivo setting, and how these can be translated to clinical trials.


Assuntos
Diferenciação Celular , Campos Eletromagnéticos , Células-Tronco Mesenquimais/citologia , Condrogênese , Humanos , Osteogênese , Pesquisa Translacional Biomédica
13.
Am J Pathol ; 183(5): 1585-1595, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012523

RESUMO

Prior work documented that surgical removal of approximately 70% of the bladder (subtotal cystectomy) in 12-week-old female rats induced complete functional regeneration of the bladder within 8 weeks. To determine whether animal age affects bladder regeneration, female F344 rats aged 12 weeks (young) and 12 months (old) underwent subtotal cystectomy, and then were evaluated from 1 to 26 weeks after subtotal cystectomy. At 26 weeks after subtotal cystectomy, bladder capacity in young animals was indistinguishable from that in age-matched controls, but bladder capacity in old animals was only approximately 56% of that in age-matched controls. There was no detectable difference in residual volume among treatment groups, but the diminished regeneration in old animals was associated with a corresponding increase in the ratio of residual volume to micturition volume. The majority of old animals exhibited evidence of chronic kidney damage after subtotal cystectomy. Maximal contraction of bladder strips to electrical field stimulation, as well as activation with carbachol, phenylephrine, and KCl, were lower in old than in young animals at 26 weeks after subtotal cystectomy. Immunostaining with proliferating cell nuclear antigen and Von Willebrand factor revealed delayed and/or diminished proliferative and angiogenic responses, respectively, in old animals. These results confirm prior work and suggest that multiple mechanisms may contribute to an age-related decline in the regenerative capacity of the bladder.


Assuntos
Envelhecimento/patologia , Cistectomia , Regeneração , Bexiga Urinária/fisiopatologia , Bexiga Urinária/cirurgia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Carbacol/farmacologia , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Feminino , Técnicas In Vitro , Rim/patologia , Rim/fisiopatologia , Modelos Lineares , Contração Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/patologia , Músculos/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Regeneração/efeitos dos fármacos , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/patologia , Micção/efeitos dos fármacos , Urodinâmica/efeitos dos fármacos
14.
Pharmacol Rev ; 65(3): 1091-133, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23818131

RESUMO

Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.


Assuntos
Farmacologia , Medicina Regenerativa , Animais , Materiais Biocompatíveis , Humanos , Transplante de Células-Tronco , Engenharia Tecidual
15.
Biomaterials ; 34(1): 140-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23059002

RESUMO

Musculoskeletal disorders are a major cause of disability and effective treatments are currently lacking. Tissue engineering affords the possibility of new therapies utilizing cells and biomaterials for the recovery of muscle volume and function. A major consideration in skeletal muscle engineering is the integration of a functional vasculature within the regenerating tissue. In this study we employed fluorescent cell labels to track the location and differentiation of co-cultured cells in vivo and in vitro. We first utilized a co-culture of fluorescently labeled endothelial cells (ECs) and muscle progenitor cells (MPCs) to investigate the ability of ECs to enhance muscle tissue formation and vascularization in an in vivo model of bioengineered muscle. Scaffolds that had been seeded with both MPCs and ECs showed significantly greater vascularization, tissue formation and enhanced innervation as compared to scaffolds seeded with MPCs alone. Subsequently, we performed in vitro experiments using a 3-cell type system (ECs, MPCs, and pericytes (PCs)) to demonstrate the utility of fluorescent cell labeling for monitoring cell growth and differentiation. The growth and differentiation of individual cell types was determined using live cell fluorescent microscopy demonstrating the utility of fluorescent labels to monitor tissue organization in real time.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Fibras Musculares Esqueléticas/citologia , Músculos/irrigação sanguínea , Músculos/inervação , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Implantes Experimentais , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/farmacologia
16.
PLoS One ; 7(10): e47414, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077610

RESUMO

Subtotal cystectomy (STC; surgical removal of ∼75% of the rat urinary bladder) elicits a robust proliferative response resulting in complete structural and functional bladder regeneration within 8-weeks. The goal of these studies was to characterize the early cellular response that mediates this regenerative phenomenon, which is unique among mammalian organ systems. STC was performed on eighteen 12-week-old female Fischer F344 rats. At 1, 3, 5 and 7-days post-STC, the bladder was harvested 2-hours after intraperitoneal injection of bromodeoxyuridine (BrdU). Fluorescent BrdU labeling was quantified in cells within the urothelium, lamina propria (LP), muscularis propria (MP) and serosa. Cell location was confirmed with fluorescently co-labeled cytokeratin, vimentin or smooth muscle actin (SMA), to identify urothelial, interstitial and smooth muscle cells, respectively. Expression of sonic hedgehog (Shh), Gli-1 and bone morphogenic factor-4 (BMP-4) were evaluated with immunochemistry. Three non-operated rats injected with BrdU served as controls. Less than 1% of cells in the bladder wall were labeled with BrdU in control bladders, but this percentage significantly increased by 5-8-fold at all time points post-STC. The spatiotemporal characteristics of the proliferative response were defined by a significantly higher percentage of BrdU-labeled cells within the urothelium at 1-day than in the MP and LP. A time-dependent shift at 3 and 5-days post-STC revealed significantly fewer BrdU-labeled cells in the MP than LP or urothelium. By 7-days the percentage of BrdU-labeled cells was similar among urothelium, LP and MP. STC also caused an increase in immunostaining for Shh, Gli-1 and BMP-4. In summary, the early stages of functional bladder regeneration are characterized by time-dependent changes in the location of the proliferating cell population, and expression of several evolutionarily conserved developmental signaling proteins. This report extends previous observations and further establishes the rodent bladder as an excellent model for studying novel aspects of mammalian organ regeneration.


Assuntos
Proliferação de Células , Regeneração/fisiologia , Bexiga Urinária , Animais , Cistectomia , Feminino , Humanos , Ratos , Bexiga Urinária/citologia , Bexiga Urinária/crescimento & desenvolvimento
17.
J Vasc Surg ; 56(3): 783-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22917043

RESUMO

OBJECTIVE: Tissue-engineered blood vessels (TEBV) have been proposed as an alternative to prosthetic grafts for dialysis access. However, arteriovenous (AV) grafts must withstand extreme flow rates and frequent needle trauma. In a proof-of-concept study, we sought to determine whether scaffold-based TEBV could withstand the hemodynamic and mechanical challenges of chronic dialysis access. METHODS: TEBV were constructed using decellularized arterial scaffolds seeded with autologous ovine endothelial cells (EC) derived from circulating endothelial progenitor cells (EPC) using a novel high-affinity capture approach. Seeded scaffolds were preconditioned to arterial pressure and flow in a bioreactor for 2 weeks prior to implantation to create carotid artery to jugular vein AV grafts in each animal. TEBV were healed for 1 month before initiating percutaneous needle puncture 3 days/week. TEBV wall geometry and patency were monitored using duplex imaging and were either explanted for histologic analysis at 2 months (n = 5) or followed for up to 6 months until venous outflow stenosis threatened AV graft patency (n = 6). RESULTS: Despite high flow, TEBV maintained stable geometry with only modest wall dilation (under 6%) by 4 months after implantation. Needle access was well tolerated with a single puncture site complication, a small pseudoaneurysm, occurring in the late group. Time-to-hemostasis at puncture sites averaged 4 ± 2 minutes. Histologic analysis at 2 months demonstrated repopulation of the outer TEBV wall by host cells and healing of needle punctures by cellular ingrowth and new matrix deposition along the tract. TEBV followed beyond 2 months showed stable wall geometry but, consistent with the primary mode of clinical AV graft failure, all TEBV eventually developed venous anastomotic stenosis (mean, 4.4 ± 0.9 months; range, 3.3-5.6 months postimplantation; n = 6). CONCLUSIONS: This pilot study supports the concept of creating dialysis access from scaffold-based autologous TEBV. Engineered AV grafts were created within a clinically relevant time frame and demonstrated stable wall geometry despite high flow and repeated puncture. Cellular ingrowth and puncture site healing may improve wall durability, but venous outflow stenosis remains the primary mode of TEBV graft failure in the ovine model.


Assuntos
Derivação Arteriovenosa Cirúrgica/instrumentação , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artérias Carótidas/cirurgia , Células Endoteliais/transplante , Hemodinâmica , Veias Jugulares/cirurgia , Diálise Renal , Engenharia Tecidual , Angiografia Digital , Animais , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Reatores Biológicos , Pressão Sanguínea , Implante de Prótese Vascular/efeitos adversos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Técnicas de Cultura de Células , Células Cultivadas , Constrição Patológica , Análise de Falha de Equipamento , Estudos de Viabilidade , Oclusão de Enxerto Vascular/diagnóstico , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/fisiopatologia , Veias Jugulares/diagnóstico por imagem , Veias Jugulares/patologia , Veias Jugulares/fisiopatologia , Teste de Materiais , Modelos Animais , Agulhas , Projetos Piloto , Desenho de Prótese , Falha de Prótese , Fluxo Pulsátil , Punções , Fluxo Sanguíneo Regional , Ovinos , Transplante de Células-Tronco , Estresse Mecânico , Fatores de Tempo , Engenharia Tecidual/métodos , Alicerces Teciduais , Tomografia Computadorizada por Raios X , Ultrassonografia Doppler em Cores , Ultrassonografia Doppler de Pulso , Grau de Desobstrução Vascular
18.
Tissue Eng Part A ; 18(11-12): 1213-28, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22439962

RESUMO

Volumetric muscle loss (VML) can result from trauma and surgery in civilian and military populations, resulting in irrecoverable functional and cosmetic deficits that cannot be effectively treated with current therapies. Previous work evaluated a bioreactor-based tissue engineering approach in which muscle derived cells (MDCs) were seeded onto bladder acellular matrices (BAM) and mechanically preconditioned. This first generation tissue engineered muscle repair (TEMR) construct exhibited a largely differentiated cellular morphology consisting primarily of myotubes, and moreover, significantly improved functional recovery within 2 months of implantation in a murine latissimus dorsi (LD) muscle with a surgically created VML injury. The present report extends these initial observations to further document the importance of the cellular phenotype and composition of the TEMR construct in vitro to the functional recovery observed following implantation in vivo. To this end, three distinct TEMR constructs were created by seeding MDCs onto BAM as follows: (1) a short-term cellular proliferation of MDCs to generate primarily myoblasts without bioreactor preconditioning (TEMR-1SP), (2) a prolonged cellular differentiation and maturation period that included bioreactor preconditioning (TEMR-1SPD; identical to the first generation TEMR construct), and (3) similar treatment as TEMR-1SPD but with a second application of MDCs during bioreactor preconditioning (TEMR-2SPD); simulating aspects of "exercise" in vitro. Assessment of maximal tetanic force generation on retrieved LD muscles in vitro revealed that TEMR-1SP and TEMR-1SPD constructs promoted either an accelerated (i.e., 1 month) or a prolonged (i.e., 2 month postinjury) functional recovery, respectively, of similar magnitude. Meanwhile, TEMR-2SPD constructs promoted both an accelerated and prolonged functional recovery, resulting in twice the magnitude of functional recovery of either TEMR-1SP or TEMR-1SPD constructs. Histological and molecular analyses indicated that TEMR constructs mediated functional recovery via regeneration of functional muscle fibers either at the interface of the construct and the native tissue or within the BAM scaffolding independent of the native tissue. Taken together these findings are encouraging for the further development and clinical application of TEMR constructs as a VML injury treatment.


Assuntos
Músculo Esquelético/lesões , Doenças Musculares/terapia , Implantação de Prótese , Recuperação de Função Fisiológica/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização , Animais , Forma Celular , Modelos Animais de Doenças , Contração Isométrica , Masculino , Camundongos , Camundongos Nus , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Fator de Transcrição PAX7/metabolismo , Ratos , Ratos Endogâmicos Lew , Regeneração , Sus scrofa , Bexiga Urinária/citologia
19.
Am J Physiol Renal Physiol ; 302(12): F1517-28, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442207

RESUMO

In animal models of partial urethral obstruction (PUO), altered smooth muscle function/contractility may be linked to changes in molecules that regulate calcium signaling/sensitization. PUO was created in male rats, and urodynamic studies were conducted 2 and 6 wk post-PUO. Cystometric recordings were analyzed for the presence or absence of nonvoiding contractions [i.e., detrusor overactivity (DO)]. RT-PCR and Western blots were performed on a subpopulation of rats to study the relationship between the expression of RhoA, L-type Ca(2+) channels, Rho kinase-1, Rho kinase-2, inositol 1,4,5-trisphosphate, ryanodine receptor, sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and protein kinase C (PKC)-potentiated phosphatase inhibitor of 17 kDa, and urodynamic findings in the same animal. Animals displayed DO at 2 (38%) and 6 wk (43%) post-PUO, increases were seen in in vivo pressures at 2 wk, and residual volume at 6 wk. Statistical analysis of RT-PCR and Western blot data at 2 wk, during the compensatory phase of detrusor hypertrophy, documented that expression of molecules that regulate calcium signaling and sensitization was consistently lower in obstructed rats without DO than those with DO or control rats. Among rats with DO at 2 wk, linear regression analysis revealed positive correlations between in vivo pressures and protein and mRNA expression of several regulatory molecules. At 6 wk, in the presence of overt signs of bladder decompensation, no clear or consistent alterations in expression of these same targets were observed at the protein level. These data extend prior work to suggest that molecular profiling of key regulatory molecules during the progression of PUO-mediated bladder dysfunction may shed new light on potential biomarkers and/or therapeutic targets.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Uretra/metabolismo , Obstrução Uretral/metabolismo , Bexiga Urinária/fisiopatologia , Animais , Canais de Cálcio Tipo L/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Uretra/fisiopatologia , Obstrução Uretral/fisiopatologia , Bexiga Urinária/metabolismo , Urodinâmica/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Ann Surg ; 255(5): 867-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22330032

RESUMO

The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.


Assuntos
Cirurgia Geral/tendências , Medicina Regenerativa , Animais , Materiais Biocompatíveis/uso terapêutico , Prótese Vascular , Transplante de Células , Sulfatos de Condroitina/uso terapêutico , Colágeno/uso terapêutico , Procedimentos Cirúrgicos Dermatológicos , Trato Gastrointestinal/cirurgia , Insuficiência Cardíaca/terapia , Humanos , Falência Renal Crônica/cirurgia , Laringe/cirurgia , Transplante de Fígado , Doenças Respiratórias/cirurgia , Pele Artificial , Alicerces Teciduais , Cicatrização/fisiologia , Ferimentos e Lesões/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA