Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(23): eadd4977, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294765

RESUMO

It is well established that tumor necrosis factor (TNF) plays an instrumental role in orchestrating the metabolic disorders associated with late stages of cancers. However, it is not clear whether TNF/TNF receptor (TNFR) signaling controls energy homeostasis in healthy individuals. Here, we show that the highly conserved Drosophila TNFR, Wengen (Wgn), is required in the enterocytes (ECs) of the adult gut to restrict lipid catabolism, suppress immune activity, and maintain tissue homeostasis. Wgn limits autophagy-dependent lipolysis by restricting cytoplasmic levels of the TNFR effector, TNFR-associated factor 3 (dTRAF3), while it suppresses immune processes through inhibition of the dTAK1/TAK1-Relish/NF-κB pathway in a dTRAF2-dependent manner. Knocking down dTRAF3 or overexpressing dTRAF2 is sufficient to suppress infection-induced lipid depletion and immune activation, respectively, showing that Wgn/TNFR functions as an intersection between metabolism and immunity allowing pathogen-induced metabolic reprogramming to fuel the energetically costly task of combatting an infection.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , NF-kappa B/metabolismo , Metabolismo Energético , Lipídeos , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA