Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(15): 1312-1322, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37478395

RESUMO

Hepcidin is the master regulator of systemic iron homeostasis. The bone morphogenetic protein (BMP) signaling pathway is a critical regulator of hepcidin expression in response to iron and erythropoietic drive. Although endothelial-derived BMP6 and BMP2 ligands have key functional roles as endogenous hepcidin regulators, both iron and erythropoietic drives still regulate hepcidin in mice lacking either or both ligands. Here, we used mice with an inactivating Bmp5 mutation (Bmp5se), either alone or together with a global or endothelial Bmp6 knockout, to investigate the functional role of BMP5 in hepcidin and systemic iron homeostasis regulation. We showed that Bmp5se-mutant mice exhibit hepcidin deficiency at age 10 days, blunted hepcidin induction in response to oral iron gavage, and mild liver iron loading when fed on a low- or high-iron diet. Loss of 1 or 2 functional Bmp5 alleles also leads to increased iron loading in Bmp6-heterozygous mice and more profound hemochromatosis in global or endothelial Bmp6-knockout mice. Moreover, double Bmp5- and Bmp6-mutant mice fail to induce hepcidin in response to long-term dietary iron loading. Finally, erythroferrone binds directly to BMP5 and inhibits BMP5 induction of hepcidin in vitro. Although erythropoietin suppresses hepcidin in Bmp5se-mutant mice, it fails to suppress hepcidin in double Bmp5- and Bmp6-mutant males. Together, these data demonstrate that BMP5 plays a functional role in hepcidin and iron homeostasis regulation, particularly under conditions in which BMP6 is limited.


Assuntos
Hemocromatose , Hepcidinas , Animais , Masculino , Camundongos , Proteína Morfogenética Óssea 6/metabolismo , Hemocromatose/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Fígado/metabolismo , Camundongos Knockout
2.
Eur J Radiol ; 165: 110898, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331287

RESUMO

PURPOSE: This study aimed to assess repeatability after repositioning (inter-scan), intra-rater, inter-rater and inter-sequence variability of mean apparent diffusion coefficient (ADC) measurements in MRI-detected prostate lesions. METHOD: Forty-three patients with suspicion for prostate cancer were included and received a clinical prostate bi-/multiparametric MRI examination with repeat scans of the T2-weighted and two DWI-weighted sequences (ssEPI and rsEPI). Two raters (R1 and R2) performed single-slice, 2D regions of interest (2D-ROIs) and 3D-segmentation-ROIs (3D-ROIs). Mean bias, corresponding limits of agreement (LoA), mean absolute difference, within-subject coefficient of variation (CoV) and repeatability/reproducibility coefficient (RC/RDC) were calculated. Bradley & Blackwood test was used for variance comparison. Linear mixed models (LMM) were used to account for multiple lesions per patient. RESULTS: Inter-scan repeatability, intra-rater and inter-sequence reproducibility analysis of ADC showed no significant bias. 3D-ROIs demonstrated significantly less variability than 2D-ROIs (p < 0.01). Inter-rater comparison demonstrated small significant systematic bias of 57 × 10-6 mm2/s for 3D-ROIs (p < 0.001). Intra-rater RC, with the lowest variation, was 145 and 189 × 10-6 mm2/s for 3D- and 2D-ROIs, respectively. For 3D-ROIs of ssEPI, RCs and RDCs were 190-198 × 10-6 mm2/s for inter-scan, inter-rater and inter-sequence variation. No significant differences were found for inter-scan, inter-rater and inter-sequence variability. CONCLUSIONS: In a single-scanner setting, single-slice ADC measurements showed considerable variation, which may be lowered using 3D-ROIs. For 3D-ROIs, we propose a cut-off of âˆ¼ 200 × 10-6 mm2/s for differences introduced by repositioning, rater or sequence effects. The results suggest that follow-up measurements should be possible by different raters or sequences.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Próstata/patologia
3.
Development ; 144(24): 4476-4480, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29254990

RESUMO

The 10th FASEB meeting 'The TGFß Superfamily: Signaling in Development and Disease' took place in Lisbon, Portugal, in July 2017. As we review here, the findings presented at the meeting highlighted the important contributions of TGFß family signaling to normal development, adult homeostasis and disease, and also revealed novel mechanisms by which TGFß signals are transduced.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Transdução de Sinais
4.
Development ; 143(21): 4016-4026, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633996

RESUMO

In Xenopus laevis, bone morphogenetic proteins (Bmps) induce expression of the transcription factor Gata2 during gastrulation, and Gata2 is required in both ectodermal and mesodermal cells to enable mesoderm to commit to a hematopoietic fate. Here, we identify tril as a Gata2 target gene that is required in both ectoderm and mesoderm for primitive hematopoiesis to occur. Tril is a transmembrane protein that functions as a co-receptor for Toll-like receptors to mediate innate immune responses in the adult brain, but developmental roles for this molecule have not been identified. We show that Tril function is required both upstream and downstream of Bmp receptor-mediated Smad1 phosphorylation for induction of Bmp target genes. Mechanistically, Tril triggers degradation of the Bmp inhibitor Smad7. Tril-dependent downregulation of Smad7 relieves repression of endogenous Bmp signaling during gastrulation and this enables mesodermal progenitors to commit to a blood fate. Thus, Tril is a novel component of a Bmp-Gata2 positive-feedback loop that plays an essential role in hematopoietic specification.


Assuntos
Hematopoese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteólise , Proteína Smad7/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , Diferenciação Celular , Embrião não Mamífero , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Proteínas de Membrana , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Gene Expr Patterns ; 20(1): 55-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26631802

RESUMO

Primitive hematopoiesis generates red blood cells that deliver oxygen to the developing embryo. Mesodermal cells commit to a primitive blood cell fate during gastrulation and, in order to do so the mesoderm must receive non-cell autonomous signals transmitted from other germ layers. In Xenopus, the transcription factor Gata2 functions in ectodermal cells to generate or transmit the non-cell autonomous signals. Here we have identified Breast Cancer Antiestrogen Resistance 3 (bcar3) as a gene that is induced in ectodermal cells downstream of Gata2. Bcar3 and its binding partner Bcar1 function to transduce integrin signaling, leading to changes in cellular morphology, motility and adhesion. We show that gata2, bcar3 and bcar1 are co-expressed in ventral ectoderm from early gastrula to early tailbud stages. At later stages of development, bcar3 and bcar1 are co-expressed in the spinal cord, notochord, fin mesenchyme and pronephros but each shows additional unique sites of expression. These co-expression and unique expression patterns suggest that Bcar3 and Bcar1 may function together but also independently during Xenopus development.


Assuntos
Fator de Transcrição GATA2/genética , Gástrula/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Xenopus/genética , Animais , Ectoderma/metabolismo , Fator de Transcrição GATA2/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hematopoese , Análise em Microsséries , Ligação Proteica , Transdução de Sinais , Técnicas de Cultura de Tecidos , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
Dev Biol ; 407(1): 1-11, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26365900

RESUMO

Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.


Assuntos
Eritropoese , Fator de Transcrição GATA2/fisiologia , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/análise , Linhagem da Célula , Gastrulação , Xenopus laevis/embriologia
7.
PLoS Negl Trop Dis ; 9(6): e0003868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114647

RESUMO

Parasites of the Leishmania genus infect and survive within macrophages by inhibiting several microbicidal molecules, such as nitric oxide and pro-inflammatory cytokines. In this context, various species of Leishmania have been reported to inhibit or reduce the production of IL-1ß both in vitro and in vivo. However, the mechanism whereby Leishmania parasites are able to affect IL-1ß production and secretion by macrophages is still not fully understood. Dependent on the stimulus at hand, the maturation of IL-1ß is facilitated by different inflammasome complexes. The NLRP3 inflammasome has been shown to be of pivotal importance in the detection of danger molecules such as inorganic crystals like asbestos, silica and malarial hemozoin, (HZ) as well as infectious agents. In the present work, we investigated whether Leishmania parasites modulate NLRP3 inflammasome activation. Using PMA-differentiated THP-1 cells, we demonstrate that Leishmania infection effectively inhibits macrophage IL-1ß production upon stimulation. In this context, the expression and activity of the metalloprotease GP63 - a critical virulence factor expressed by all infectious Leishmania species - is a prerequisite for a Leishmania-mediated reduction of IL-1ß secretion. Accordingly, L. mexicana, purified GP63 and GP63-containing exosomes, caused the inhibition of macrophage IL-1ß production. Leishmania-dependent suppression of IL-1ß secretion is accompanied by an inhibition of reactive oxygen species (ROS) production that has previously been shown to be associated with NLRP3 inflammasome activation. The observed loss of ROS production was due to an impaired PKC-mediated protein phosphorylation. Furthermore, ROS-independent inflammasome activation was inhibited, possibly due to an observed GP63-dependent cleavage of inflammasome and inflammasome-related proteins. Collectively for the first time, we herein provide evidence that the protozoan parasite Leishmania, through its surface metalloprotease GP63, can significantly inhibit NLRP3 inflammasome function and IL-1ß production.


Assuntos
Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Leishmania/enzimologia , Leishmaniose/imunologia , Metaloendopeptidases/metabolismo , Animais , Linhagem Celular , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leishmania/imunologia , Leishmania mexicana/enzimologia , Leishmania mexicana/imunologia , Leishmaniose/metabolismo , Macrófagos/imunologia , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosforilação , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo
8.
PLoS Pathog ; 11(3): e1004776, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25826301

RESUMO

The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites.


Assuntos
Leishmania/metabolismo , Leishmaniose/metabolismo , Macrófagos/metabolismo , Metaloendopeptidases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Animais , Linhagem Celular Transformada , Leishmania/genética , Leishmaniose/genética , Macrófagos/parasitologia , Metaloendopeptidases/genética , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
9.
Nucleic Acids Res ; 42(16): 10433-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147211

RESUMO

The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both promoters are further characterized by the presence of tri-methylated lysine 4 of histone H3, marking active chromatin. We provide evidence that in our apoptosis models cell death occurs independently of p53 or ARF. Furthermore, we demonstrate that recruitment of MYC to the NOXA as well as to the BIM gene promoters depends on MYC's interaction with the zinc finger transcription factor EGR1 and an EGR1-binding site in both promoters. Our study uncovers a novel molecular mechanism by showing that the functional cooperation of MYC with EGR1 is required for bortezomib-induced cell death. This observation may be important for novel therapeutic strategies engaging the inherent pro-death function of MYC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Ácidos Borônicos/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/genética , Pirazinas/farmacologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Proteína 11 Semelhante a Bcl-2 , Sítios de Ligação , Bortezomib , Linhagem Celular Tumoral , Células Cultivadas , Genes p16 , Genes p53 , Proteínas de Membrana/fisiologia , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transcrição Gênica
10.
Acta Histochem ; 113(3): 248-55, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20122714

RESUMO

Notch signaling is firmly established as a form of cell-to-cell communication that is critical throughout development. Dysregulation of Notch has been linked to cancer and developmental disorders, making it an important target for therapeutic intervention. One aspect of this pathway that sets it apart from others is its apparent reliance on endocytosis by signal-sending and signal-receiving cells. The subtle details of endocytosis-mediated molecular processing within both ligand- and receptor-presenting cells that are required for the Notch signal to maintain fidelity remain unclear. The endosomal system has long been known to play an important role in terminating signal transduction by directing lysosomal trafficking and degradation of cell surface receptors. More recently, endocytic trafficking has also been shown to be critical for activation of signaling. This review highlights four models of endocytic processing in the context of the Notch pathway. In ligand-presenting cells, endocytosis may be required for pre-processing of ligands to make them competent for interaction with Notch receptors and/or for exerting a pulling force on the ligand/Notch complex. In receptor-presenting cells, endocytosis may be a prerequisite for Notch cleavage and thus activation and/or it could be a means of limiting ligand-independent Notch activation. Recent advances in our understanding of how and why endocytosis of Notch receptors and ligands is required for activation and termination of signaling during normal development and in disease states are discussed.


Assuntos
Membrana Celular/fisiologia , Endocitose , Ligantes , Receptores Notch/metabolismo , Animais , Membrana Celular/química , Humanos , Modelos Biológicos , Transporte Proteico , Receptores Notch/química , Transdução de Sinais
11.
Blood ; 114(20): 4393-401, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19759357

RESUMO

Bone morphogenetic protein 4 (BMP4) is required for mesoderm commitment to the hematopoietic lineage during early embryogenesis. However, deletion of BMP4 is early embryonically lethal and its functional role in definitive hematopoiesis is unknown. Consequently, we used a BMP4 hypomorph to investigate the role of BMP4 in regulating hematopoietic stem cell (HSC) function and maintaining steady-state hematopoiesis in the adult. Reporter gene expression shows that Bmp4 is expressed in cells associated with the hematopoietic microenvironment including osteoblasts, endothelial cells, and megakaryocytes. Although resting hematopoiesis is normal in a BMP4-deficient background, the number of c-Kit+, Sca-1+, Lineage- cells is significantly reduced. Serial transplantation studies reveal that BMP4-deficient recipients have a microenvironmental defect that reduces the repopulating activity of wild-type HSCs. This defect is even more pronounced in a parabiosis model that demonstrates a profound reduction in wild-type hematopoietic cells within the bone marrow of BMP4-deficient recipients. Furthermore, wild-type HSCs that successfully engraft into the BMP4-deficient bone marrow show a marked decrease in functional stem cell activity when tested in a competitive repopulation assay. Taken together, these findings indicate BMP4 is a critical component of the hematopoietic microenvironment that regulates both HSC number and function.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Nicho de Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Citometria de Fluxo , Expressão Gênica , Camundongos , Parabiose
12.
Microbes Infect ; 10(1): 97-101, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18069034

RESUMO

Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.


Assuntos
Apoptose , Chlamydia trachomatis/fisiologia , Proteínas Inibidoras de Apoptose/deficiência , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Animais , Caspase 3/análise , Caspase 7/análise , Células Cultivadas , Fragmentação do DNA , Fibroblastos/microbiologia , Camundongos , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides
13.
Genes Cells ; 12(7): 841-51, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17584296

RESUMO

Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.


Assuntos
Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , DNA Complementar/isolamento & purificação , Embrião não Mamífero , Éxons , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/isolamento & purificação , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , RNA Mensageiro Estocado/isolamento & purificação , RNA Mensageiro Estocado/metabolismo , Homologia de Sequência , Xenopus laevis/embriologia
14.
Mol Cell Biol ; 26(2): 425-37, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16382135

RESUMO

Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA/fisiologia , Feminino , Técnicas In Vitro , Mitomicina/farmacologia , Dados de Sequência Molecular , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Homologia de Sequência de Aminoácidos , Xenopus laevis
15.
Blood ; 107(8): 3114-21, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357321

RESUMO

Signals derived from nonhematopoietic tissues are essential for normal primitive erythropoiesis in vertebrates, but little is known about the nature of these signals. In Xenopus, unidentified factors secreted by ectodermal cells during gastrulation are required to enable the underlying ventral mesoderm to form blood. Steel is expressed in the ectoderm of early Xenopus embryos and is known to regulate definitive erythroid progenitor survival and differentiation in other organisms, making it an excellent candidate regulator of primitive erythropoiesis. In this study, we tested whether steel signaling is required for primitive red blood cell differentiation in mice and frogs. We show that Xsl is expressed in the ectoderm in Xenopus gastrulae and that c-kit homologs are expressed in the underlying mesoderm at the same stages of development. We present loss of function data in whole Xenopus embryos and explants that demonstrate a requirement for ectodermally derived steel to signal through c-kit in the mesoderm to support early steps in the differentiation of primitive erythroid but not myeloid cells. Finally, we show that primitive erythropoiesis is not disrupted in mouse embryos that lack c-kit function. Our data suggest a previously unrecognized and unique function of steel/c-kit during primitive erythropoiesis in Xenopus.


Assuntos
Ectoderma/metabolismo , Células Precursoras Eritroides/fisiologia , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Fator de Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Ectoderma/citologia , Células Precursoras Eritroides/citologia , Gástrula/citologia , Gástrula/metabolismo , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Xenopus laevis
16.
Development ; 129(6): 1455-66, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11880354

RESUMO

In the current study, we show that bone morphogenetic proteins (BMPs) play a role in hematopoiesis that is independent of their function in specifying ventral mesodermal fate. When BMP activity is upregulated or inhibited in Xenopus embryos hematopoietic precursors are specified properly but few mature erythrocytes are generated. Distinct cellular defects underlie this loss of erythrocytes: inhibition of BMP activity induces erythroid precursors to undergo apoptotic cell death, whereas constitutive activation of BMPs causes an increase in commitment of hematopoietic progenitors to myeloid differentiation and a concomitant decrease in erythrocytes that is not due to enhanced apoptosis. These blood defects are observed even when BMP activity is misregulated solely in non-hematopoietic (ectodermal) cells, demonstrating that BMPs generate extrinsic signals that regulate hematopoiesis independent of mesodermal patterning. Further analysis revealed that endogenous calmodulin-dependent protein kinase IV (CaM KIV) is required to negatively modulate hematopoietic functions of BMPs downstream of receptor activation. Our data are consistent with a model in which CaM KIV inhibits BMP signals by activating a substrate, possibly cAMP-response element-binding protein (CREB), that recruits limiting amounts of CREB binding protein (CBP) away from transcriptional complexes functioning downstream of BMPs.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Transdução de Sinais/fisiologia , Xenopus/fisiologia , Animais , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina , Sobrevivência Celular/fisiologia , Embrião não Mamífero/fisiologia , Globinas/fisiologia , Hematopoese/fisiologia , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA