Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620621

RESUMO

Tracking and imaging immune cells in vivo non-invasively would offer insights into the immune responses induced by vaccination. Here we report a cancer vaccine consisting of polymer-coated NaErF4/NaYF4 core-shell down-conversion nanoparticles emitting luminescence in the near-infrared spectral window IIb (1,500-1,700 nm in wavelength) and with surface-conjugated antigen (ovalbumin) and electrostatically complexed adjuvant (class-B cytosine-phosphate-guanine). Whole-body wide-field imaging of the subcutaneously injected vaccine in tumour-bearing mice revealed rapid migration of the nanoparticles to lymph nodes through lymphatic vessels, with two doses of the vaccine leading to the complete eradication of pre-existing tumours and to the prophylactic inhibition of tumour growth. The abundance of antigen-specific CD8+ T lymphocytes in the tumour microenvironment correlated with vaccine efficacy, as we show via continuous-wave imaging and lifetime imaging of two intravenously injected near-infrared-emitting probes (CD8+-T-cell-targeted NaYbF4/NaYF4 nanoparticles and H-2Kb/ovalbumin257-264 tetramer/PbS/CdS quantum dots) excited at different wavelengths, and by volumetrically visualizing the three nanoparticles via light-sheet microscopy with structured illumination. Nanoparticle-based vaccines and imaging probes emitting infrared light may facilitate the design and optimization of immunotherapies.

2.
J Immunother Cancer ; 10(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36253002

RESUMO

BACKGROUND: Localized ablative immunotherapies hold great promise in stimulating antitumor immunity to treat metastatic and poorly immunogenic tumors. Tumor ablation is well known to release tumor antigens and danger-associated molecular patterns to stimulate T-cell immunity, but its immune stimulating effect is limited, particularly against metastatic tumors. METHODS: In this study, we combined photothermal therapy with a potent immune stimulant, N-dihydrogalactochitosan, to create a local ablative immunotherapy which we refer to as laser immunotherapy (LIT). Mice bearing B16-F10 tumors were treated with LIT when the tumors reached 0.5 cm3 and were monitored for survival, T-cell activation, and the ability to resist tumor rechallenge. RESULTS: We found that LIT stimulated a stronger and more consistent antitumor T-cell response to the immunologically 'cold' B16-F10 melanoma tumors and conferred a long-term antitumor memory on tumor rechallenge. Furthermore, we discovered that LIT generated de novo CD8+ T-cell responses that strongly correlated with animal survival and tumor rejection. CONCLUSION: In summary, our findings demonstrate that LIT enhances the activation of T cells and drives de novo antitumor T-cell responses. The data presented herein suggests that localized ablative immunotherapies have great potential to synergize with immune checkpoint therapies to enhance its efficacy, resulting in improved antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Melanoma Experimental , Acetilglucosamina/análogos & derivados , Animais , Antígenos de Neoplasias , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL
3.
Mol Immunol ; 46(15): 3000-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19595460

RESUMO

The potency of a T cell is determined in large part by two interactions, binding of a cognate peptide to the MHC, and binding of the T cell receptor (TCR) to this pepMHC. Various studies have attempted to assess the relative importance of these interactions, and to correlate the corresponding binding parameters with the level of T cell activity mediated by the peptide. To further examine the properties that govern optimal T cell activity, here we engineered both the peptide:MHC interaction and the TCR:pepMHC interaction to generate improved T cell activity. Using a system involving the 2C TCR and its allogeneic pepMHC ligand, QL9-L(d), we show that a peptide substitution of QL9 (F5R), increased the affinity and stability of the pep-L(d) complex (e.g. cell surface t(1/2)-values of 13 min for QL9-L(d) versus 87 min for F5R-L(d)). However, activity of peptide F5R for 2C T cells was not enhanced because the 2C TCR bound with very low affinity to F5R-L(d) compared to QL9-L(d) (K(D)=300 microM and K(D)=1.6 microM, respectively). To improve the affinity, yeast display of the 2C TCR was used to engineer two mutant TCRs that exhibited higher affinity for F5R-L(d) (K(D)=1.2 and 6.3 microM). T cells that expressed these higher affinity TCRs were stimulated by F5R-L(d) in the absence of CD8, and the highest affinity TCR exhibited enhanced activity for F5R compared to QL9. The results provide a guide to designing the explicit binding parameters that govern optimal T cell activities.


Assuntos
Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Linhagem Celular , Clonagem Molecular , Camundongos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Ressonância de Plasmônio de Superfície , Linfócitos T/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA