Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(3): 100632, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34258593

RESUMO

Automated high-content immunofluorescence (IF) microscopy is used to monitor and quantify localization of the TGFß/Smads and Taz/Yap Hippo effectors in mouse epithelial EpH4 cells transfected with Taz/Yap siRNAs. The nuclear-to-cytoplasmic protein ratios obtained by IF are converted into normalized masses by estimating the ratio of the compartment volumes. This method has the advantage that endogenous rather than tagged proteins are tracked and that knockdown of Taz/Yap can be simultaneously monitored at the single-cell level. For complete details on the use and execution of this protocol, please refer to Labibi et al. (2020).


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Corantes Fluorescentes/química , Camundongos , RNA Interferente Pequeno/genética , Proteínas Smad/metabolismo , Frações Subcelulares/metabolismo
2.
Nat Commun ; 9(1): 3510, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158528

RESUMO

In most solid tumors, the Hippo pathway is inactivated through poorly understood mechanisms that result in the activation of the transcriptional regulators, YAP and TAZ. Here, we identify NUAK2 as a YAP/TAZ activator that directly inhibits LATS-mediated phosphorylation of YAP/TAZ and show that NUAK2 induction by YAP/TAZ and AP-1 is required for robust YAP/TAZ signaling. Pharmacological inhibition or loss of NUAK2 reduces the growth of cultured cancer cells and mammary tumors in mice. Moreover, in human patient samples, we show that NUAK2 expression is elevated in aggressive, high-grade bladder cancer and strongly correlates with a YAP/TAZ gene signature. These findings identify a positive feed forward loop in the Hippo pathway that establishes a key role for NUAK2 in enforcing the tumor-promoting activities of YAP/TAZ. Our results thus introduce a new opportunity for cancer therapeutics by delineating NUAK2 as a potential target for re-engaging the Hippo pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Fosfoproteínas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
3.
Mol Cell Neurosci ; 57: 83-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24141051

RESUMO

Bone Morphogenetic Proteins (BMPs) are crucial for many aspects of the development and differentiation of the nervous system and are important in controlling cytoskeletal remodeling during neuronal morphogenesis. BMPs are TGFß superfamily members that signal through a heteromeric complex of type I and type II BMP receptors. The BMPRII receptor is particularly important in mediating remodeling of the neuronal cytoskeleton through the activation of BMPRII-bound cytoskeletal regulators, such as LIM Kinase (LIMK). Here, we show that PAK1, a key regulator of diverse neuronal processes and an upstream activator of LIMK, binds to the BMP type I receptor, ALK2. Although, PAK1 is dispensable for activation of the Smad transcriptional mediators, abrogation of PAK1 expression or inhibition of PAK1 activity prevents BMP-induced neurite outgrowth in cultured neuroblastoma cell lines. Moreover, in primary murine embryonic cortical neurons, inhibition of PAK activity blocks BMP7-induced cofilin phosphorylation, prevents remodeling of the actin cytoskeleton and thereby blocks BMP7-induced dendrite formation. Thus, we propose a model in which BMP7 signaling leads to the recruitment of ALK2-bound PAK1 to BMPRII, which binds a downstream regulator of the actin cytoskeleton, LIMK1, and that the BMP receptor complex thereby acts as a scaffold to localize and coordinate actin cytoskeletal remodeling. We propose that this scaffold plays a key role in mediating BMP7-dependent dendritogenesis in primary cortical neurons.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Neurogênese , Quinases Ativadas por p21/metabolismo , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Quinases Lim/metabolismo , Camundongos , Fosforilação , Ligação Proteica
4.
PLoS One ; 7(11): e48670, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144924

RESUMO

Constitutive Wnt signalling is characterized by excessive levels of ß-catenin protein and is a frequent occurrence in cancer. APC and Axin are key components of the ß-catenin destruction complex that acts to promote ß-catenin degradation. The levels of Axin are in turn controlled by tankyrases, members of the PARP-family of poly-ADP-ribosylation enzymes. In colorectal cancer cells, which typically harbor APC mutations, inhibition of tankyrase activity promotes Axin stabilization and attenuates Wnt signalling. Here, we examined the effect of inhibiting tankyrases in breast cancer cells with normal APC. We show that application of the small molecule tankyrase inhibitor, XAV939 or siRNA-mediated abrogation of tankyrase expression increases Axin1 and Axin2 protein levels and attenuates Wnt-induced transcriptional responses in several breast cancer lines. In MDA-MB-231 cells, inhibiton of tankyrase activity also attenuate Wnt3a induced cell migration. Moreover, in both MDA-MB-231 and colorectal cancer cells, XAV939 inhibits cell growth under conditions of serum-deprivation. However, the presence of serum prevents this growth inhibitory effect, although inhibition of Wnt-induced transcriptional and migratory responses was maintained. These results indicate that stabilization of Axin by inhibition of tankyrases alone, may not be an effective means to block tumor cell growth and that combinatorial therapeutic approaches should be considered.


Assuntos
Proteína Axina/metabolismo , Neoplasias da Mama/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Tanquirases/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Interferência de RNA
5.
Cancer Res ; 71(24): 7628-39, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22009536

RESUMO

Excessive signaling from the Wnt pathway is associated with numerous human cancers. Using a high throughput screen designed to detect inhibitors of Wnt/ß-catenin signaling, we identified a series of acyl hydrazones that act downstream of the ß-catenin destruction complex to inhibit both Wnt-induced and cancer-associated constitutive Wnt signaling via destabilization of ß-catenin. We found that these acyl hydrazones bind iron in vitro and in intact cells and that chelating activity is required to abrogate Wnt signaling and block the growth of colorectal cancer cell lines with constitutive Wnt signaling. In addition, we found that multiple iron chelators, desferrioxamine, deferasirox, and ciclopirox olamine similarly blocked Wnt signaling and cell growth. Moreover, in patients with AML administered ciclopirox olamine, we observed decreased expression of the Wnt target gene AXIN2 in leukemic cells. The novel class of acyl hydrazones would thus be prime candidates for further development as chemotherapeutic agents. Taken together, our results reveal a critical requirement for iron in Wnt signaling and they show that iron chelation serves as an effective mechanism to inhibit Wnt signaling in humans.


Assuntos
Hidrazonas/farmacologia , Ferro/metabolismo , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Doença Aguda , Administração Oral , Benzoatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopirox , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Deferasirox , Desferroxamina/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Hidrazonas/química , Quelantes de Ferro/farmacologia , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triazóis/farmacologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
6.
Int J Biochem Cell Biol ; 42(5): 630-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20006729

RESUMO

The transcription factor, Pax3, alters transcription by binding directly to promoter regions harbouring sequences recognized by either its paired domain or its homeodomain. We demonstrated previously that the promoter regions of many of the genes whose expression was altered during a Pax3-induced mesenchymal-to-epithelial transition harboured sequences recognized by lymphoid enhancer factor-1 (Lef1). Given the apparent lack of DNA-binding consensus sequences for Pax3 in these promoters, it was hypothesized that Pax3 might alter transcriptional activity of promoters harbouring Lef1-binding sites independent of Pax3 binding to DNA. We describe here a novel mode of Pax3-dependent regulation of transcription that is mediated through DNA-independent binding to Lef1. Specifically, we demonstrate that Pax3 binds to Lef1, determined in binding assays and co-immunoprecipitation of endogenous Pax3 and Lef1. Binding assays employing deletion mutants of Pax3 and Lef1 determined that association was mediated through the homeodomain of Pax3 and the first half of the Lef1 DNA-binding domain. The significance of this association was demonstrated in transcriptional assays using a luciferase reporter gene downstream of a model promoter harbouring Lef1 DNA-binding consensus sites. Pax3 augmented Lef1-dependent transactivation from this promoter. This increase in transcriptional activity occurred in the absence and presence of added beta-catenin. Chromatin immunoprecipitation assays demonstrated further that Pax3-association to complexes bound to DNA harbouring Lef1 consensus sequences was dependent on Lef1. These data reveal a novel mode of transcriptional regulation by Pax3. This mode of transcriptional regulation suggests further that Pax3 activity may directly effect the expression of factors regulated by signal transduction pathways dependent on Lef1.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Sítios de Ligação , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Tubo Neural/citologia , Tubo Neural/metabolismo , Especificidade de Órgãos , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Somitos/citologia , Somitos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Mol Cell Biochem ; 301(1-2): 21-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17200797

RESUMO

Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O(2)) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4-8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Carcinoma Hepatocelular , Fracionamento Celular , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Rim/citologia , Neoplasias Hepáticas , Ésteres de Forbol/metabolismo , Ligação Proteica , Elementos de Resposta , Ácidos Tri-Iodobenzoicos/metabolismo
8.
Toxicol Sci ; 89(2): 465-74, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16280379

RESUMO

Cadmium (Cd2+) is known to cause a selective disruption of the filamentous actin cytoskeleton in the smooth muscle-like renal mesangial cell. We examined the effect of Cd2+ on the distribution of the actin-severing protein, gelsolin. Over 8 h, CdCl2 (10 microM) caused a progressive shift of gelsolin from a diffuse perinuclear and cytoplasmic distribution to a pattern decorating F-actin filaments. Over this time filaments were decreased in number in many cells, and membrane ruffling was initiated. Western blotting and 125I-F-actin gel overlays demonstrated an increase in actin-binding gelsolin activity in the cytoskeletal fraction of cell extracts following Cd2+ treatment. In in vitro polymerization assays, gelsolin acted as a nucleating factor and increased the rate of polymerization. Cytosolic extracts also increased the polymerization rate. Addition of Cd2+ together with gelsolin further increased the rate of polymerization. Gelsolin enhanced depolymerization of purified actin, and Cd2+ partially suppressed this effect. However, cytoskeletal extracts from Cd2+-treated cells also markedly increased depolymerization, suggesting further that Cd2+ may activate cellular component(s) such as gelsolin for actin binding. We conclude that a major effect of Cd2+ on the mesangial cell cytoskeleton is manifest through activating the association of gelsolin with actin, with gelsolin's severing properties predominating under conditions found in Cd2+-treated cells.


Assuntos
Cloreto de Cádmio/toxicidade , Citoesqueleto/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Gelsolina/metabolismo , Células Mesangiais/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Citoesqueleto/metabolismo , Imuno-Histoquímica , Células Mesangiais/metabolismo , Ratos
9.
Toxicol Lett ; 138(3): 235-42, 2003 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-12565200

RESUMO

Changes in the activities of antioxidant enzymes superoxide dismutase, catalase (CAT), glutathione peroxidase and heme oxygenase (HO) and changes in lipid peroxidation and reduced glutathione (GSH) levels were measured in the livers of control and Lewis lung carcinoma (LLC)-bearing mice 24 h after a single injection of cisplatin or CoCl(2). Treatment with cisplatin induced the same degree of lipid peroxidation and GSH depletion as did CoCl(2) but the antioxidant enzymes were differently involved in cisplatin- and cobalt-induced oxidative stress responses. In cobalt-treated mice the activities of these enzymes were either inhibited or not changed significantly and only the HO activity was increased (5-fold) as a main protective enzyme. In cisplatin-treated animals the antioxidant enzymes were activated but the enhancement of HO and CAT was greater in LLC-inoculated mice. It is suggested that these two enzymes represent the protective response against cisplatin toxicity in the livers of tumor-bearing animals.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/enzimologia , Cisplatino/farmacologia , Cobalto/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Fígado/enzimologia , Animais , Antineoplásicos/antagonistas & inibidores , Antioxidantes/metabolismo , Catalase/metabolismo , Cisplatino/antagonistas & inibidores , Glutationa/metabolismo , Peróxidos Lipídicos/biossíntese , Fígado/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Superóxido Dismutase/metabolismo
10.
Comp Biochem Physiol C Toxicol Pharmacol ; 131(2): 177-84, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11879785

RESUMO

Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.


Assuntos
Antioxidantes/toxicidade , Cobalto/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Cobalto/administração & dosagem , Ativação Enzimática , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Cobaias , Injeções Subcutâneas , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos , Ratos Wistar , Especificidade da Espécie , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA