Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662449

RESUMO

Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.

2.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628960

RESUMO

TGF-ß signaling promotes migration, invasion, and distant colonization of cancer cells in advanced metastatic cancers. TGF-ß signaling suppresses the anti-tumor immune response in a tumor microenvironment, allowing sustained tumor growth. TGF-ß plays an important role in normal physiology; thus it is no surprise that the clinical development of effective and safe TGF-ß inhibitors has been hampered due to their high toxicity. We discovered that increased expression of LY6K in cancer cells led to increased TGF-ß signaling and that inhibition of LY6K could lead to reduced TGF-ß signaling and reduced in vivo tumor growth. LY6K is a highly cancer-specific protein, and it is not expressed in normal organs except in the testes. Thus, LY6K is a valid target for developing therapeutic strategies to inhibit TGF-ß signaling in cancer cells. We employed in vitro pull-down assays and molecular dynamics simulations to understand the structural determinants of the TGF-ß receptor complex with LY6K. This combined approach allowed us to identify the critical residues and dynamics of the LY6K interaction with the TGF-ß receptor complex. These data are critical in designing novel drugs for the inhibition of TGF-ß in LY6K expressing cancer, induction of anti-tumor immune response, and inhibition of tumor growth and metastatic spread.


Assuntos
Colículos Inferiores , Segunda Neoplasia Primária , Humanos , Fator de Crescimento Transformador beta , Receptores de Fatores de Crescimento Transformadores beta , Linfócitos , Microambiente Tumoral
3.
Cancer Lett ; 558: 216094, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805500

RESUMO

Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-ß pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.


Assuntos
Neoplasias , Feminino , Humanos , Antígenos Ly , Aurora Quinase B , Aurora Quinases , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Linfócitos
4.
Bioorg Med Chem ; 79: 117171, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680947

RESUMO

Small molecule NSC243928 binds with LY6K, a potential target for the treatment of triple-negative breast cancer, and induces cancer cell death with an unclear mechanism. We have developed chemical tools to identify the molecular mechanisms of NSC243928-LY6K interaction. Herein, we report on the development and synthesis of biotinylated and fluorophore-tethered derivatives of NSC243928 guided by docking studies and molecular dynamics. Surface plasmon resonance assay indicates that these derivatives retained a direct binding with LY6K protein. Confocal analysis revealed that nitrobenzoxadiazole (NBD) fluorophore tagged NSC243928 is retained in LY6K expressing cancer cells. These novel modified compounds will be employed in future in vitro and in vivo studies to understand the molecular mechanisms of NSC243928 mediated cancer cell death. These studies will pave the path for developing novel targeted therapeutics and understanding any potential side-effects of these treatments for hard-to-treat cancers such as triple-negative breast cancer or other cancers with high expression of LY6K.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
BMC Biol ; 20(1): 131, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35658860

RESUMO

BACKGROUND: Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to "intradiol ring cleavage dioxygenases (DOGs)" from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. RESULTS: We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite's gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites' survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. CONCLUSION: Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants.


Assuntos
Dioxigenases , Solanum lycopersicum , Tetranychidae , Animais , Dioxigenases/genética , Herbivoria , Solanum lycopersicum/genética , Filogenia , Plantas , Tetranychidae/genética
6.
Plant Physiol ; 189(4): 1961-1975, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348790

RESUMO

Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified ß-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and ß-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its ß-cyanoalanine synthase activity. Consistent with the ß-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the ß-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite's ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants.


Assuntos
Arabidopsis , Tetranychidae , Animais , Arabidopsis/genética , Cianetos , Glucosinolatos , Herbivoria , Indóis , Isotiocianatos , Liases , Plantas , Tetranychidae/fisiologia
7.
Insect Biochem Mol Biol ; 142: 103722, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063675

RESUMO

Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the ß-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in ß-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of ß-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of ß-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.


Assuntos
Liases , Tetranychidae , Animais , Cianetos/metabolismo , Cisteína , Liases/química , Liases/genética , Liases/metabolismo , Plantas/metabolismo , Tetranychidae/metabolismo
8.
Pestic Biochem Physiol ; 176: 104873, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119218

RESUMO

GSTs (Glutathione S-transferases) are known to catalyze the nucleophilic attack of the sulfhydryl group of reduced glutathione (GSH) on electrophilic centers of xenobiotic compounds, including insecticides and acaricides. Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 32 genes that code for secreted proteins belonging to the GST family of enzymes. To better understand the role of these proteins in T. urticae, we have functionally characterized TuGSTd01. Moreover, we have modeled the structure of the enzyme in apo form, as well as in the form with bound inhibitor. We demonstrated that this protein is a glutathione S-transferase that can conjugate glutathione to 1-chloro-2,4-dinitrobenzene (CDNB). We have tested TuGSTd01 activity with a range of potential substrates such as cinnamic acid, cumene hydroperoxide, and allyl isothiocyanate; however, the enzyme was unable to process these compounds. Using mutagenesis, we showed that putative active site variants S11A, E66A, S67A, and R68A mutants, which were residues predicted to interact directly with GSH, have no measurable activity, and these residues are required for the enzymatic activity of TuGSTd01. There are several reports that associate some T. urticae acaricide resistance with increased activity of GSTs . However, we found that TuGSTd01 is not able to detoxify abamectin; in fact, the acaricide inhibits the enzyme with Ki = 101 µM. Therefore, we suggest that the increased GST activity observed in abamectin resistant T. urticae field populations is a part of the compensatory feedback loop. In this case, the increased production of GSTs and relatively high concentration of GSH in cells allow GSTs to maintain physiological functions despite the presence of the acaricide.


Assuntos
Acaricidas , Tetranychidae , Acaricidas/farmacologia , Animais , Glutationa Transferase/genética , Ivermectina/análogos & derivados , Tetranychidae/genética
9.
Cancers (Basel) ; 12(2)2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098321

RESUMO

Elevated gene expression of Lymphocyte antigen 6K (LY6K) in cancer cells is associated with poor survival outcomes in multiple different cancer types including cervical, breast, ovarian, lung, and head and neck cancer. Since inhibition of LY6K expression inhibits cancer cell growth, we set out to explore whether pharmacological inhibition of LY6K could produce the same effect. We screened small molecule libraries for direct binding to recombinant LY6K protein in a surface plasmon resonance assay. We found that NSC243928 directly binds to the full-length and mature forms of LY6K and inhibits growth of HeLa cells that express LY6K. NSC243928 did not display binding with LY6D or LY6E. Our data demonstrate a first-time proof of principle study that pharmacological inhibition of LY6K using small molecules in cancer cells is a valid approach to developing targeted therapies against LY6K. This approach will be specifically relevant in hard-to-treat cancers where LY6K is highly expressed, such as cervical, pancreatic, ovarian, head and neck, lung, gastric, and triple-negative breast cancers.

10.
Insect Biochem Mol Biol ; 107: 19-30, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529144

RESUMO

Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the "intradiol dioxygenase-like" subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T. urticae, we have structurally and functionally characterized one paralog (tetur07g02040). It was demonstrated that this protein is indeed an intradiol ring-cleavage dioxygenase, as the enzyme is able to cleave catechol between two hydroxyl-groups using atmospheric dioxygen. The enzyme was characterized functionally and structurally. The active site of the T. urticae enzyme contains an Fe3+ cofactor that is coordinated by two histidine and two tyrosine residues, an arrangement that is similar to those observed in bacterial homologs. However, the active site is significantly more solvent exposed than in bacterial proteins. Moreover, the mite enzyme is monomeric, while almost all structurally characterized bacterial homologs form oligomeric assemblies. Tetur07g02040 is not only the first spider mite dioxygenase that has been characterized at the molecular level, but is also the first structurally characterized intradiol ring-cleavage dioxygenase originating from a eukaryote.


Assuntos
Proteínas de Artrópodes/genética , Dioxigenases/genética , Transferência Genética Horizontal , Tetranychidae/genética , Animais , Proteínas de Artrópodes/metabolismo , Dioxigenases/metabolismo , Tetranychidae/metabolismo
11.
FEBS J ; 285(15): 2900-2921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29917313

RESUMO

Vibrio cholerae, the causative pathogen of the life-threatening infection cholera, encodes two copies of ß-ketoacyl-acyl carrier protein synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1 as exhibiting specificity for acetyl-CoA and CoA thioesters with short acyl chains, similar to that observed for FabH homologs found in most gram-negative bacteria. vcFabH2 prefers medium chain-length acyl-CoA thioesters, particularly octanoyl-CoA, which is a pattern of specificity rarely seen in bacteria. Structural characterization of one vcFabH1 and six vcFabH2 structures determined in either apo form or in complex with acetyl-CoA/octanoyl-CoA indicate that the substrate-binding pockets of vcFabH1 and vcFabH2 are of different sizes, accounting for variations in substrate chain-length specificity. An unusual and unique feature of vcFabH2 is its C-terminal fragment that interacts with both the substrate-entrance loop and the dimer interface of the enzyme. Our discovery of the pattern of substrate specificity of both vcFabH1 and vcFabH2 can potentially aid the development of novel antibacterial agents against V. cholerae. Additionally, the distinctive substrate preference of FabH2 in V. cholerae and related facultative anaerobes conceivably make it an attractive component of genetically engineered bacteria used for commercial biofuel production.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetilcoenzima A/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocombustíveis , Cristalografia por Raios X , Cisteína/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
12.
FEBS J ; 284(15): 2425-2441, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28618168

RESUMO

Streptococcus pyogenes, also known as Group A Strep (GAS), is an obligate human pathogen that is responsible for millions of infections and numerous deaths per year. Infection manifestations can range from simple, acute pharyngitis to more complex, necrotizing fasciitis. To date, most treatments for GAS infections involve the use of common antibiotics including tetracycline and clindamycin. Unfortunately, new strains have been identified that are resistant to these drugs, therefore, new targets must be identified to treat drug-resistant strains. This work is focused on the structural and functional characterization of three proteins: spNadC, spNadD, and spNadE. These enzymes are involved in the biosynthesis of nicotinamide adenine dinucleotide (NAD+ ). The structures of spNadC and spNadE were determined. SpNadC is suggested to play a role in GAS virulence, while spNadE, functions as an NAD synthetase and is considered to be a new drug target. Determination of the spNadE structure uncovered a putative, NH3 channel, which may provide insight into the mechanistic details of NH3 -dependent NAD+ synthetases in prokaryotes. ENZYMES: Quinolinate phosphoribosyltransferase: EC2.4.2.19 and NAD synthetase: EC6.3.1.5. DATABASE: Protein structures for spNadC, spNadCΔ69A , and spNadE are deposited into Protein Data Bank under the accession codes 5HUL, 5HUO & 5HUP, and 5HUH & 5HUJ, respectively.


Assuntos
Amida Sintases/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Pentosiltransferases/metabolismo , Ácido Quinolínico/metabolismo , Streptococcus pyogenes/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Amida Sintases/química , Amida Sintases/genética , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Análise por Conglomerados , Biologia Computacional , Cristalografia por Raios X , Dimerização , Deleção de Genes , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Pentosiltransferases/química , Pentosiltransferases/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
13.
J Agric Food Chem ; 65(27): 5453-5462, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613863

RESUMO

The two-spotted spider mite Tetranychus urticae is a polyphagous agricultural pest and poses a high risk to global crop production as it is rapidly developing pesticide resistance. Genomic and transcriptomic analysis has revealed the presence of a remarkable cyanase gene in T. urticae and related mite species within the Acariformes lineage. Cyanase catalyzes the detoxification of cyanate and is potentially an attractive protein target for the development of new acaricides. Phylogenetic analysis indicates that within the Acariformes, the cyanase gene originates from a single horizontal gene transfer event, which precedes subsequent speciation. Our structural studies presented here compare and contrast prokaryotic cyanases to T. urticae cyanase, which all form homodecamers and have conserved active site residues, but display different surface areas between homodimers in the overall decameric structure.


Assuntos
Proteínas de Artrópodes/química , Carbono-Nitrogênio Liases/química , Tetranychidae/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Tetranychidae/química , Tetranychidae/genética
14.
J Immunol ; 198(3): 1334-1344, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039303

RESUMO

Der p 1 and Der f 1 are major allergens from Dermatophagoides pteronyssinus and D. farinae, respectively. An analysis of antigenic determinants on both allergens was performed by site-directed mutagenesis. The analysis was based on the x-ray crystal structures of the allergens in complex with Fab fragments of three murine mAbs that interfere with IgE Ab binding: the two Der p 1-specific mAbs 5H8 and 10B9, and the cross-reactive mAb 4C1. On one hand, selected residues in the epitopes for mAb 5H8 and mAb 4C1 were substituted with amino acids that resulted in impaired Ab binding to Der p 1. On the other hand, an epitope for the Der p 1-specific mAb 10B9, which partially overlaps with mAb 4C1, was created in Der f 1. The mutation of 1-3 aa residues in Der f 1 was sufficient to bind mAb 10B9. These residues form hydrogen bonds with CDRs of the Ab other than H CDR3. This observation unveils an exception to the dominant role of H CDR3 commonly observed in Ag recognition. Overall, this study resulted in the identification of important residues for mAb and IgE Ab recognition in group 1 mite allergens. This information can be used to engineer allergen mutants with reduced IgE Ab binding for immunotherapy.


Assuntos
Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Cisteína Endopeptidases/imunologia , Epitopos , Imunoglobulina E/imunologia , Animais , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/química , Sítios de Ligação de Anticorpos , Reações Cruzadas , Epitopos/imunologia , Mutagênese Sítio-Dirigida
15.
J Immunol ; 195(1): 307-16, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026055

RESUMO

Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1-specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partial overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1-10B9 and Der p 1-5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab-protein or Fab-peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen-Ab interactions in group 1 mite allergens. The surface data of Fab-protein and Fab-peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cisteína Endopeptidases/química , Fragmentos Fab das Imunoglobulinas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/isolamento & purificação , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/isolamento & purificação , Epitopos/química , Epitopos/imunologia , Ligação de Hidrogênio , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Pyroglyphidae/química , Pyroglyphidae/imunologia , Alinhamento de Sequência
16.
Nucleic Acids Res ; 43(2): 1069-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25564528

RESUMO

RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Indóis/farmacologia , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , RNA/metabolismo , Proteínas Recombinantes/metabolismo
17.
Mol Immunol ; 60(1): 86-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769496

RESUMO

Bla g 4 is a male cockroach specific protein and is one of the major allergens produced by Blattella germanica (German cockroach). This protein belongs to the lipocalin family that comprises a set of proteins that characteristically bind small hydrophobic molecules and play a role in a number of processes such as: retinoid and pheromone transport, prostaglandin synthesis and mammalian immune response. Using NMR and isothermal titration calorimetry we demonstrated that Bla g 4 binds tyramine and octopamine in solution. In addition, crystal structure analysis of the complex revealed details of tyramine binding. As tyramine and octopamine play important roles in invertebrates, and are counterparts to vertebrate adrenergic transmitters, we speculate that these molecules are physiological ligands for Bla g 4. The nature of binding these ligands to Bla g 4 sheds light on the possible biological function of the protein. In addition, we performed a large-scale analysis of Bla g 4 and Per a 4 (an allergen from American cockroach) homologs to get insights into the function of these proteins. This analysis together with a structural comparison of Blag 4 and Per a 4 suggests that these proteins may play different roles and most likely bind different ligands. Accession numbers: The atomic coordinates and the structure factors have been deposited to the Protein Data Band under accession codes: 4N7C for native Bla g 4 and 4N7D for the Se-Met Bla g 4 structure.


Assuntos
Alérgenos/imunologia , Baratas/imunologia , Proteínas de Insetos/imunologia , Octopamina/imunologia , Tiramina/imunologia , Alérgenos/química , Alérgenos/ultraestrutura , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Hipersensibilidade/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/ultraestrutura , Masculino , Modelos Moleculares , Ligação Proteica , Análise de Sequência de Proteína
18.
Biochim Biophys Acta ; 1830(12): 5375-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23811341

RESUMO

BACKGROUND: Albumins are multifunctional proteins present in the blood serum of animals. They can bind and transport a wide variety of ligands which they accommodate due to their conformational flexibility. Serum albumins are highly conserved both in amino acid sequence and three-dimensional structure. Several mammalian and avian serum albumins (SAs) are also allergens. Sensitization to one of the SAs coupled with the high degree of conservation between SAs may result in cross-reactive antibodies in allergic individuals. Sensitivity to SA generally begins with exposure to an aeroallergen, which can then lead to cross-sensitization to serum albumins present in food. SCOPE OF REVIEW: This review focuses on the allergenicity of SAs presented in a structural context. MAJOR CONCLUSIONS: SA allergenicity is unusual taking into account the high sequence identity and similarity between SA from different species and human serum albumin. Cross-reactivity of human antibodies towards different SAs is one of the most important characteristics of these allergens. GENERAL SIGNIFICANCE: Establishing a relationship between sequence and structure of different SAs and their interactions with antibodies is crucial for understanding the mechanisms of cross-sensitization of atopic individuals. Structural information can also lead to better design and production of recombinant SAs to replace natural proteins in allergy testing and desensitization. Therefore, structural analyses are important for diagnostic and treatment purposes. This article is part of a Special Issue entitled Serum Albumin.


Assuntos
Alérgenos/imunologia , Albumina Sérica/imunologia , Alérgenos/química , Sequência de Aminoácidos , Animais , Reações Cruzadas , Humanos , Hipersensibilidade/etiologia , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Albumina Sérica/química
19.
Blood ; 120(23): 4461-9, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22936661

RESUMO

Menin functions as a critical oncogenic cofactor of mixed lineage leukemia (MLL) fusion proteins in the development of acute leukemias, and inhibition of the menin interaction with MLL fusion proteins represents a very promising strategy to reverse their oncogenic activity. MLL interacts with menin in a bivalent mode involving 2 N-terminal fragments of MLL. In the present study, we reveal the first high-resolution crystal structure of human menin in complex with a small-molecule inhibitor of the menin-MLL interaction, MI-2. The structure shows that the compound binds to the MLL pocket in menin and mimics the key interactions of MLL with menin. Based on the menin-MI-2 structure, we developed MI-2-2, a compound that binds to menin with low nanomolar affinity (K(d) = 22nM) and very effectively disrupts the bivalent protein-protein interaction between menin and MLL. MI-2-2 demonstrated specific and very pronounced activity in MLL leukemia cells, including inhibition of cell proliferation, down-regulation of Hoxa9 expression, and differentiation. Our results provide the rational and essential structural basis to design next generation of inhibitors for effective targeting of the menin-MLL interaction in leukemia and demonstrate a proof of concept that inhibition of complex multivalent protein-protein interactions can be achieved by a small-molecule inhibitor.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Immunoblotting , Imunoprecipitação , Leucemia/patologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética
20.
J Struct Funct Genomics ; 13(1): 15-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403005

RESUMO

Phosphoglycerate kinase (PGK) is indispensable during glycolysis for anaerobic glucose degradation and energy generation. Here we present comprehensive structure analysis of two putative PGKs from Bacillus anthracis str. Sterne and Campylobacter jejuni in the context of their structural homologs. They are the first PGKs from pathogenic bacteria reported in the Protein Data Bank. The crystal structure of PGK from Bacillus anthracis str. Sterne (BaPGK) has been determined at 1.68 Å while the structure of PGK from Campylobacter jejuni (CjPGK) has been determined at 2.14 Å resolution. The proteins' monomers are composed of two domains, each containing a Rossmann fold, hinged together by a helix which can be used to adjust the relative position between two domains. It is also shown that apo-forms of both BaPGK and CjPGK adopt open conformations as compared to the substrate and ATP bound forms of PGK from other species.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , Fosfoglicerato Quinase/química , Trifosfato de Adenosina/química , Apoenzimas/química , Cristalografia por Raios X , Dobramento de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA