Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526660

RESUMO

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Assuntos
Compartimento Celular , Imageamento Tridimensional , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Alcinos , Células Cultivadas , DNA Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Transdução de Sinais
2.
Hum Mol Genet ; 27(10): 1743-1753, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518248

RESUMO

LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.


Assuntos
Proteases Dependentes de ATP/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Biópsia , Linhagem Celular , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/fisiopatologia , Exoma/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Luxação Congênita de Quadril/metabolismo , Luxação Congênita de Quadril/fisiopatologia , Humanos , Lactente , Doença de Leigh/metabolismo , Doença de Leigh/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatologia , Fosforilação Oxidativa , Anormalidades Dentárias/metabolismo , Anormalidades Dentárias/fisiopatologia , Sequenciamento do Exoma
3.
Nucleic Acids Res ; 44(14): 6868-82, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27353330

RESUMO

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins.


Assuntos
Proteínas de Neoplasias/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Sequência Conservada , Reagentes de Ligações Cruzadas/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/química , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/química
4.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510951

RESUMO

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Doenças Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Pré-Escolar , Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Proteínas de Repetições Ricas em Leucina , Masculino , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mutação , Linhagem , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
5.
Front Microbiol ; 5: 374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101074

RESUMO

Protein synthesis is central to life and maintaining a highly accurate and efficient mechanism is essential. What happens when a translating ribosome stalls on a messenger RNA? Many highly intricate processes have been documented in the cytosol of numerous species, but how does organellar protein synthesis resolve this stalling issue? Mammalian mitochondria synthesize just thirteen highly hydrophobic polypeptides. These proteins are all integral components of the machinery that couples oxidative phosphorylation. Consequently, it is essential that stalled mitochondrial ribosomes can be efficiently recycled. To date, there is no evidence to support any particular molecular mechanism to resolve this problem. However, here we discuss the observation that there are four predicted members of the mitochondrial translation release factor family and that only one member, mtRF1a, is necessary to terminate the translation of all thirteen open reading frames in the mitochondrion. Could the other members be involved in the process of recycling stalled mitochondrial ribosomes?

6.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008111

RESUMO

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Polinucleotídeo Adenililtransferase/genética , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Proteínas de Ligação a RNA/metabolismo
7.
Hum Mol Genet ; 23(4): 949-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24092330

RESUMO

Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.


Assuntos
RNA Ribossômico/genética , RNA/genética , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA Ribossômico/química
8.
PLoS One ; 8(5): e64670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741365

RESUMO

The Escherichia coli oligoribonuclease, ORN, has a 3' to 5' exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.


Assuntos
Proteínas 14-3-3/genética , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/metabolismo , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Ácidos Nucleicos/química , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
RNA Biol ; 10(9): 1433-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23635806

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute a large family of RNA-binding proteins that contain a canonical 35 residue repeat motif. Originally identified in Arabidopsis thaliana, family members are found in protists, fungi, and metazoan but are by far most abundant in plant organelles. Seven examples have been identified in human mitochondria and roles have been tentatively ascribed to each. In this review, we briefly outline each of these PPR proteins and discuss the role each is believed to play in facilitating mitochondrial gene expression.


Assuntos
Mitocôndrias/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Ribonuclease P/genética , Ribonuclease P/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
10.
Int J Oncol ; 40(3): 851-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22108807

RESUMO

MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Sequência Consenso , DNA/genética , Proteínas de Ligação a DNA/genética , Histidina/metabolismo , Humanos , Proteínas Ligantes de Maltose/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência/métodos , Análise de Sequência de DNA/métodos , Dedos de Zinco/genética
11.
Brain ; 134(Pt 1): 183-95, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21169334

RESUMO

Mutations in several mitochondrial DNA and nuclear genes involved in mitochondrial protein synthesis have recently been reported in combined respiratory chain deficiency, indicating a generalized defect in mitochondrial translation. However, the number of patients with pathogenic mutations is small, implying that nuclear defects of mitochondrial translation are either underdiagnosed or intrauterine lethal. No comprehensive studies have been reported on large cohorts of patients with combined respiratory chain deficiency addressing the role of nuclear genes affecting mitochondrial protein synthesis to date. We investigated a cohort of 52 patients with combined respiratory chain deficiency without causative mitochondrial DNA mutations, rearrangements or depletion, to determine whether a defect in mitochondrial translation defines the pathomechanism of their clinical disease. We followed a combined approach of sequencing known nuclear genes involved in mitochondrial protein synthesis (EFG1, EFTu, EFTs, MRPS16, TRMU), as well as performing in vitro functional studies in 22 patient cell lines. The majority of our patients were children (<15 years), with an early onset of symptoms <1 year of age (65%). The most frequent clinical presentation was mitochondrial encephalomyopathy (63%); however, a number of patients showed cardiomyopathy (33%), isolated myopathy (15%) or hepatopathy (13%). Genomic sequencing revealed compound heterozygous mutations in the mitochondrial transfer ribonucleic acid modifying factor (TRMU) in a single patient only, presenting with early onset, reversible liver disease. No pathogenic mutation was detected in any of the remaining 51 patients in the other genes analysed. In vivo labelling of mitochondrial polypeptides in 22 patient cell lines showed overall (three patients) or selective (four patients) defects of mitochondrial translation. Immunoblotting for mitochondrial proteins revealed decreased steady state levels of proteins in some patients, but normal or increased levels in others, indicating a possible compensatory mechanism. In summary, candidate gene sequencing in this group of patients has a very low detection rate (1/52), although in vivo labelling of mitochondrial translation in 22 patient cell lines indicate that a nuclear defect affecting mitochondrial protein synthesis is responsible for about one-third of combined respiratory chain deficiencies (7/22). In the remaining patients, the impaired respiratory chain activity is most likely the consequence of several different events downstream of mitochondrial translation. Clinical classification of patients with biochemical analysis, genetic testing and, more importantly, in vivo labelling and immunoblotting of mitochondrial proteins show incoherent results, but a systematic review of these data in more patients may reveal underlying mechanisms, and facilitate the identification of novel factors involved in combined respiratory chain deficiency.


Assuntos
Núcleo Celular/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Músculo Esquelético/patologia , Biossíntese de Proteínas , Adolescente , Adulto , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Criança , Pré-Escolar , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Transporte de Elétrons/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo , Mutação
12.
Biochem Soc Trans ; 38(6): 1523-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21118119

RESUMO

Mitochondria are ubiquitous and essential organelles for all nucleated cells of higher eukaryotes. They contain their own genome [mtDNA (mitochondrial DNA)], and this autosomally replicating extranuclear DNA encodes a complement of genes whose products are required to couple oxidative phosphorylation. Sequencing of this human mtDNA more than 20 years ago revealed unusual features that included a modified codon usage. Specific deviations from the standard genetic code include recoding of the conventional UGA stop to tryptophan, and, strikingly, the apparent recoding of two arginine triplets (AGA and AGG) to termination signals. This latter reassignment was made because of the absence of cognate mtDNA-encoded tRNAs, and a lack of tRNAs imported from the cytosol. Each of these codons only occurs once and, in both cases, at the very end of an open reading frame. The presence of both AGA and AGG is rarely found in other mammals, and the molecular mechanism that has driven the change from encoding arginine to dictating a translational stop has posed a challenging conundrum. Mitochondria from the majority of other organisms studied use only UAA and UAG, leaving the intriguing question of why human organelles appear to have added the complication of a further two stop codons, AGA and AGG, or have they? In the present review, we report recent data to show that mammalian mitochondria can utilize a -1 frameshift such that only the standard UAA and UAG stop codons are required to terminate the synthesis of all 13 polypeptides.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Ribossomos/metabolismo , Códon , DNA Mitocondrial/genética , Código Genético , Humanos , Ribossomos/genética
13.
RNA Biol ; 7(3): 282-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20458175

RESUMO

Until recently, human mitochondria were regarded as unusual as they appeared to employ four stop codons to terminate translation. In addition to the UAA/UAG of the universal genetic code, two arginine triplets (AGA/AGG) had been re-assigned as termination signals. This posed the conundrum of what factor was responsible for recognizing these triplets to promote translation termination? Recent data indicates that in fact no protein is required to recognize AGA/AGG. Indeed, it is the absence of any cognate factor, tRNA or polypeptide that is important. On encountering either of these 'hungry' codons at the end of an open reading frame, instead of requiring a novel or modified release factor, human mitoribosomes employ -1 frameshifting to reposition a standard UAG codon in the A-site, indicating that only the universal UAA and UAG are used as stop codons. This renders a single mitochondrial release factor, mtRF1a, previously shown to be capable of terminating 11 of the 13 open reading frames encoded by the mitochondrial genome, to be sufficient to release all nascent human mitochondrial gene products from the mitoribosome.


Assuntos
Proteínas Mitocondriais/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia , Sequência de Aminoácidos , Códon de Terminação/metabolismo , Formação de Conceito , Humanos , Proteínas Mitocondriais/genética , Modelos Biológicos , Dados de Sequência Molecular , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Biossíntese de Proteínas/genética , Pensamento
14.
Biochem J ; 416(1): e5-6, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18939947

RESUMO

Genes encoding PPR (pentatricopeptide repeat)-containing proteins constitute one of the largest gene families in plants. The majority of these proteins are predicted to target organelles and to bind to RNA. Strikingly, there is a dearth of these proteins in mammals, although genomic searches reveal six candidates, all of which are also predicted to target the mitochondrion. Two of these proteins, POLRMT (the mitochondrial RNA polymerase) and MRPS27, a mitoribosomal protein, are involved in transcription and translation respectively. PTCD1 (pentatricopeptide repeat domain protein 1) and PTCD3 are predicted to be involved in the assembly of respiratory chain complexes, whereas mutations in one other protein, LRPPRC (leucine-rich pentatricopeptide repeat cassette), have been shown to cause defects in the levels of cytochrome c oxidase, the terminal member of the respiratory chain. In this issue of the Biochemical Journal, Xu et al. turn their attention to the remaining candidate, PTCD2. Depletion in a mouse model led to deficiencies of the third complex of the respiratory chain that caused profound ultrastructural changes in the heart. The exact molecular function of PTCD2 remains unclear, but depletion leads to an apparent lack of processing of the mitochondrial transcript encoding apocytochrome b, a critical member of complex III. These data are consistent with PTCD2 playing an important role in the post-transcriptional expression of the mitochondrial genome.


Assuntos
Motivos de Aminoácidos , Genes Mitocondriais/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Animais , Citocromos b/genética , RNA Polimerases Dirigidas por DNA/fisiologia , Expressão Gênica , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteínas de Neoplasias/fisiologia , Edição de RNA/fisiologia
15.
Nucleic Acids Res ; 36(9): 3065-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18400783

RESUMO

Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNA(Val). In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNA(Val) were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNA(Val) observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNA(Val). By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNA(Val), consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.


Assuntos
Antígenos HLA/metabolismo , Miopatias Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação Puntual , RNA de Transferência de Valina/genética , RNA/genética , Valina-tRNA Ligase/metabolismo , Sequência de Bases , Linhagem Celular , Células Cultivadas , Humanos , Mitocôndrias/enzimologia , Dados de Sequência Molecular , RNA/química , RNA/metabolismo , Estabilidade de RNA , RNA Mitocondrial , RNA de Transferência de Valina/química , RNA de Transferência de Valina/metabolismo
16.
Nucleic Acids Res ; 34(13): e95, 2006 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16885236

RESUMO

The human mitochondrial genome (mtDNA) encodes polypeptides that are critical for coupling oxidative phosphorylation. Our detailed understanding of the molecular processes that mediate mitochondrial gene expression and the structure-function relationships of the OXPHOS components could be greatly improved if we were able to transfect mitochondria and manipulate mtDNA in vivo. Increasing our knowledge of this process is not merely of fundamental importance, as mutations of the mitochondrial genome are known to cause a spectrum of clinical disorders and have been implicated in more common neurodegenerative disease and the ageing process. In organellar or in vitro reconstitution studies have identified many factors central to the mechanisms of mitochondrial gene expression, but being able to investigate the molecular aetiology of a limited number of cell lines from patients harbouring mutated mtDNA has been enormously beneficial. In the absence of a mechanism for manipulating mtDNA, a much larger pool of pathogenic mtDNA mutations would increase our knowledge of mitochondrial gene expression. Colonic crypts from ageing individuals harbour mutated mtDNA. Here we show that by generating cytoplasts from colonocytes, standard fusion techniques can be used to transfer mtDNA into rapidly dividing immortalized cells and, thereby, respiratory-deficient transmitochondrial cybrids can be isolated. A simple screen identified clones that carried putative pathogenic mutations in MTRNR1, MTRNR2, MTCOI and MTND2, MTND4 and MTND6. This method can therefore be exploited to produce a library of cell lines carrying pathogenic human mtDNA for further study.


Assuntos
Células Clonais , DNA Mitocondrial/genética , Mutação , Fusão Celular , Linhagem Celular , Respiração Celular , Células Cultivadas , Colo/citologia , Deficiência de Citocromo-c Oxidase/genética , Humanos , Proteínas Mitocondriais/análise , Fosforilação Oxidativa
17.
Pediatr Res ; 59(3): 440-4, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16492986

RESUMO

Mutations of mitochondrial DNA (mtDNA) are an important cause of genetic disease, yet rarely present in the neonatal period. Here we report the clinical, biochemical, and molecular genetic findings of an infant who died at the age of 1 mo with marked biventricular hypertrophy, aortic coarctation, and severe lactic acidosis due to a previously described but unusual mtDNA mutation, a 7-bp intragenic inversion within the mitochondrial gene encoding ND1 protein of complex I (MTND1). In direct contrast to the previous case, an adult with exercise intolerance who only harbored the mutation in muscle, the MTND1 inversion in our patient was present at high levels in several tissues including the heart, muscle, liver, and cultured skin fibroblasts. There was no evidence of the mutation or respiratory complex I defect in a muscle biopsy from the patient's mother. Transmitochondrial cytoplasmic hybrids (cybrids) containing high mutant loads of the inversion expressed the biochemical defect but apparently normal levels of the assembled complex. Our report highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and reemphasizes the need for appropriate genetic counseling for families affected by mtDNA disease.


Assuntos
Acidose Láctica/genética , DNA Mitocondrial/genética , NADH Desidrogenase/genética , Mutação Puntual , Acidose Láctica/mortalidade , Adulto , Coartação Aórtica/genética , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Evolução Fatal , Feminino , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Direita/genética , Lactente , Recém-Nascido
18.
Biochem J ; 377(Pt 3): 725-31, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14585098

RESUMO

The human mitochondrial genome (mtDNA) is a small, circular DNA duplex found in multi-copy in the mitochondrial matrix. It is almost fully transcribed from both strands to produce large polycistronic RNA units that are processed and matured. The 13 mtDNA-encoded polypeptides are translated from mt-mRNAs that have been matured by polyadenylation of their free 3'-termini. A patient with clinical features consistent with an mtDNA disorder was recently shown to carry a microdeletion, resulting in the loss of the termination codon for MTATP6 and in its juxtaposition with MTCO3. Cell lines from this patient exhibited low steady-state levels of RNA14, the bi-cistronic transcript encoding subunits 6 and 8 of the F(o)F(1)-ATP synthase, complex V, consistent with a decreased stability. Recent reports of 'non-stop' mRNA decay systems in the cytosol have failed to determine the fate of gene products derived from transcripts lacking termination codons, although enhanced decay clearly required the 'non-stop' transcripts to be translated. We wished to determine whether functional translation products could still be expressed from non-stop transcripts in the human mitochondrion. Although a minor defect in complex V assembly was noted in the patient-derived cell lines, the steady-state level of ATPase 6 was similar to controls, consistent with the pattern of de novo mitochondrial protein synthesis. Moreover, no significant difference in ATP synthase activity could be detected. We conclude that, in the absence of a functional termination codon, although mitochondrial transcripts are more rapidly degraded, they are also translated to generate stable polypeptides that are successfully integrated into functional enzyme complexes.


Assuntos
Proteínas de Transporte , Códon de Terminação/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Peptídeos/metabolismo , Deleção de Sequência/genética , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Células Cultivadas , Análise Mutacional de DNA/métodos , Fibroblastos/química , Expressão Gênica/genética , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/biossíntese , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/fisiologia , Peptídeos/genética , Poliadenilação/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mitocondrial
19.
Hum Mol Genet ; 12(18): 2341-8, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12915481

RESUMO

Human mtDNA is transcribed from both strands, producing polycistronic RNA species that are immediately processed. Discrete RNA units are matured by the addition of nucleotides at their 3' termini: -CCA trinucleotide is added to mt-tRNAs, whilst mt-rRNAs and mt-mRNAs are oligo- or polyadenylated, respectively. The cis-acting elements, enzymes and indeed the mechanisms involved in these processes are still largely uncharacterized. Further, the function of polyadenylation in promoting stability, translation or decay of human mt-mRNA is unclear. A microdeletion has been identified in a patient presenting with mtDNA disease. Loss of these two residues removes the termination codon for MTATP6 and sets MTCO3 immediately in frame. Accurate processing at this site still occurs, but there is a markedly decreased steady-state level of RNA14, the ATPase 8- and 6-encoding bi-cistronic mRNA unit, establishing that an mtDNA mutation can cause dysregulation of mRNA stability. Analysis of the polyadenylation profile of the processed RNA14 at steady state revealed substantial abnormalities. The majority of mutated RNA14 terminated with short poly (A) extensions and a second, partially truncated population, was also present. Initial maturation of mutated RNA14 was unaffected, but deadenylation occurred rapidly. Inhibition of mitochondrial protein synthesis showed that the deadenylation was dependent on translation. Finally, deadenylation was shown to enhance mRNA decay, explaining the decrease in steady-state RNA14. An hypothesis is presented to describe how an mtDNA mutation that results in the loss of a termination codon causes enhanced mt-mRNA decay by translation-dependent deadenylation.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Biossíntese de Proteínas , Deleção de Sequência/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Células Cultivadas , Códon de Terminação , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fibroblastos/química , Humanos , Cinética , Mitocôndrias/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras , Modelos Biológicos , Poliadenilação/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial , Proteínas Recombinantes de Fusão/metabolismo
20.
Br J Haematol ; 120(1): 80-8, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12492580

RESUMO

Glutathione S-transferases (GSTs) are implicated in cytotoxic drug resistance in leukaemia. In a previous study, expression of mu class GST (GSTM) was associated with poor prognosis in childhood acute lymphoblastic leukaemia (ALL), however, that study did not differentiate between individual GSTM isoforms. This study, therefore, investigated individual GSTM isoform expression in ALL blasts at the mRNA level. Leukaemic blasts from 21 children with ALL were studied. Interindividual variation in the pattern of GSTM mRNA isoform expression was demonstrated. GSTM2 transcript was expressed in all patients in contradistinction to GSTM5, which was not detected in any sample. GSTM3 and GSTM4 expression varied between individuals, with GSTM3 expressed in 62% and GSTM4 in 24% of patients. Lymphoblast expression of GSTM3 was positively related to good prognosis whereas expression of GSTM4 was not related to clinical outcome in this small cohort. No relationship was demonstrated with established indicators of prognosis, including sex, age, immunophenotype and presenting white cell count. The results suggest that expression of GSTM3 may play a role in determining prognosis in childhood ALL and could provide more information for accurate stratification of treatment. Further studies are required to determine whether there is a causal relationship between GSTM3 expression and clinical outcome.


Assuntos
Glutationa Transferase/genética , Isoenzimas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , RNA Mensageiro/análise , Linfócitos T/enzimologia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Contagem de Leucócitos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA