Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cornea ; 43(2): 195-200, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788597

RESUMO

PURPOSE: The aim of this study is to describe the variable phenotype of congenital corneal opacities occurring in patients with biallelic CYP1B1 pathogenic variants. METHODS: A retrospective chart review was conducted to identify patients with congenital corneal opacities and CYP1B1 pathogenic variants seen at UPMC Children's Hospital of Pittsburgh. Ophthalmic examination, high-frequency ultrasound, anterior segment optical coherence tomography, histopathologic images, and details of genetic testing were reviewed. RESULTS: Three children were identified. All presented with raised intraocular pressure. Two patients showed bilateral limbus-to-limbus avascular corneal opacification that did not resolve with intraocular pressure control; 1 showed unilateral avascular corneal opacity with a crescent of clear cornea, iridocorneal adhesions, iridolenticular adhesions, and classical features of congenital glaucoma in the fellow eye (enlarged corneal diameter, Haab striae, and clearing of the corneal clouding with appropriate intraocular pressure control). The first 2 patients were visually rehabilitated with penetrating keratoplasty. Histopathology revealed distinct features: a variably keratinized epithelium; a thick but discontinuous Bowman-like layer with areas of disruption and abnormal cellularity; Descemet membrane, when observed, showed reduced endothelial cells; and no pathological changes of Haab striae were identified. Two patients had compound heterozygous pathogenic variants in CYP1B1 causing premature stop codons, whereas 1 was homozygous for a pathogenic missense variant. CONCLUSIONS: Congenital corneal opacities seen in biallelic CYP1B1 pathogenic variants have a variable phenotype. One is that commonly termed as Peters anomaly type 1 (with iridocorneal adhesions, with or without iridolenticular adhesions) and the other is a limbus-to-limbus opacity, termed CYP1B1 cytopathy. Clinicians should be aware of this phenotypic variability.


Assuntos
Doenças da Córnea , Opacidade da Córnea , Criança , Humanos , Estudos Retrospectivos , Células Endoteliais , Opacidade da Córnea/diagnóstico , Opacidade da Córnea/genética , Opacidade da Córnea/cirurgia , Doenças da Córnea/diagnóstico , Doenças da Córnea/genética , Fenótipo , Variação Biológica da População , Citocromo P-450 CYP1B1/genética
2.
Ophthalmic Genet ; 44(2): 147-151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36341706

RESUMO

BACKGROUND: Although 8q21.11 microdeletion syndrome (8q21.11 DS) has been reported in association with congenital corneal opacities, reports of the clinicopathological features and management are scarce. METHODS: We reviewed medical records including ophthalmic evaluations, imaging, operative reports, and pathology reports of two unrelated patients referred to the Ophthalmology Clinic of UPMC Children's Hospital of Pittsburgh with a cytogenetic diagnosis of 8q21.11 DS. RESULTS: Ophthalmological evaluation of both children revealed bilateral enlarged, staphylomatous, and cloudy corneas with neovascularization. These findings were consistent with the diagnosis of congenital corneal staphyloma (CCS). In one patient, anterior segment optical coherence tomography and high-frequency ultrasound revealed materials consistent with lens remnants embedded in the cornea; this was confirmed by histopathology. In the second patient, lens was found to be adherent to the cornea during surgery. One eye underwent enucleation for corneal perforation secondary to elevated intraocular pressure. In the other eyes, treatment consisted of penetrating keratoplasty combined with vitrectomy. Ahmed tube was subsequently placed to control intraocular pressure. CONCLUSION: 8q21.11 microdeletion syndrome can be associated with bilateral CCS, likely related to a combination of anterior segment developmental anomalies and elevated intraocular pressure. Tectonic penetrating keratoplasty is necessary to prevent corneal perforation, together with a strict control of the intraocular pressure.


Assuntos
Transtornos Cromossômicos , Opacidade da Córnea , Perfuração da Córnea , Anormalidades do Olho , Glaucoma , Criança , Humanos , Transtornos Cromossômicos/patologia , Córnea/patologia , Opacidade da Córnea/diagnóstico , Perfuração da Córnea/complicações , Perfuração da Córnea/patologia , Perfuração da Córnea/cirurgia , Anormalidades do Olho/diagnóstico , Glaucoma/patologia , Ceratoplastia Penetrante/métodos
3.
J Neurosci ; 42(41): 7848-7860, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36414008

RESUMO

Mutations in PTEN-induced kinase 1 (PINK1) contribute to autosomal recessive Parkinson's disease with cognitive and neuropsychiatric comorbidities. Disturbances in dendritic and spine architecture are hallmarks of neurodegenerative and neuropsychiatric conditions, but little is known of the impact of PINK1 on these structures. We used Pink1 -/- mice to study the role of endogenous PINK1 in regulating dendritic architecture, spine density, and spine maturation. Pink1 -/- cortical neurons of unknown sex showed decreased dendritic arborization, affecting both apical and basal arbors. Dendritic simplification in Pink1 -/- neurons was primarily driven by diminished branching with smaller effects on branch lengths. Pink1 -/- neurons showed reduced spine density with a shift in morphology to favor filopodia at the expense of mushroom spines. Electrophysiology revealed significant reductions in miniature EPSC (mEPSC) frequency in Pink1 -/- neurons, consistent with the observation of decreased spine numbers. Transfecting with human PINK1 rescued changes in dendritic architecture, in thin, stubby, and mushroom spine densities, and in mEPSC frequency. Diminished spine density was also observed in Golgi-Cox stained adult male Pink1 -/- brains. Western blot study of Pink1 -/- brains of either sex revealed reduced phosphorylation of NSFL1 cofactor p47, an indirect target of PINK1. Transfection of Pink1 -/- neurons with a phosphomimetic p47 plasmid rescued dendritic branching and thin/stubby spine density with a partial rescue of mushroom spines, implicating a role for PINK1-regulated p47 phosphorylation in dendrite and spine development. These findings suggest that PINK1-dependent synaptodendritic alterations may contribute to the risk of cognitive and/or neuropsychiatric pathologies observed in PINK1-mutated families.SIGNIFICANCE STATEMENT Loss of PINK1 function has been implicated in both familial and sporadic neurodegenerative diseases. Yet surprisingly little is known of the impact of PINK1 loss on the fine structure of neurons. Neurons receive excitatory synaptic signals along a complex network of projections that form the dendritic tree, largely at tiny protrusions called dendritic spines. We studied cortical neurons and brain tissues from mice lacking PINK1. We discovered that PINK1 deficiency causes striking simplification of dendritic architecture associated with reduced synaptic input and decreased spine density and maturation. These changes are reversed by reintroducing human PINK1 or one of its downstream mediators into PINK1-deficient mouse neurons, indicating a conserved function, whose loss may contribute to neurodegenerative processes.


Assuntos
Espinhas Dendríticas , Doença de Parkinson , Humanos , Animais , Camundongos , Espinhas Dendríticas/metabolismo , Neurônios/fisiologia , Doença de Parkinson/metabolismo , Fosforilação , Proteínas Quinases/genética , PTEN Fosfo-Hidrolase/metabolismo
4.
Am J Ophthalmol Case Rep ; 27: 101599, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35664447

RESUMO

Purpose: To describe a case of iris metastasis as the initial presentation of clear cell renal cell carcinoma, and to discuss molecular profiling of both the metastasis and primary kidney tumor. Observations: We report a patient with blurred vision who underwent ophthalmic examination and was found to have an iris mass, which was excised and diagnosed as a metastatic clear cell renal cell carcinoma by morphology and immunohistochemical analysis. As a result of the pathology findings, computed tomography imaging was performed, revealing a right kidney mass, which was also resected and shown to represent a high-grade carcinoma confined within the renal fascia without lymphovascular invasion. Molecular testing of the primary and metastatic tumors using a custom next-generation sequencing panel revealed similar mutational profiles but disclosed a TERT promoter mutation in the primary neoplasm, not present in the metastasis, suggesting seeding of an early lower grade neoplastic cell clone within the iris. Conclusions and importance: This report illustrates how pathological examination of a small iris lesion led to the discovery of a previously unknown systemic malignancy at a resectable stage. Molecular genetic profiling revealed that even lower grade clones within a high-grade neoplasm have metastatic potential.

5.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
6.
Mol Aspects Med ; 82: 100972, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34130867

RESUMO

Autophagy is the process by which cells can selectively or non-selectively remove damaged proteins and organelles. As the cell's main means of sequestering damaged mitochondria for removal, mitophagy is central to cellular function and survival. Research on autophagy and mitochondrial quality control has increased exponentially in relation to the pathogenesis of numerous disease conditions, from cancer and immune diseases to chronic neurodegenerative diseases like Parkinson's disease (PD). Understanding how components of the autophagic/mitophagic machinery are affected during disease, as well as the contextual relationship of autophagy with determining neuronal health and function, is essential to the goal of designing therapies for human disease. In this review, we will summarize key signaling molecules that consign damaged mitochondria for autophagic degradation, describe the relationship of genes linked to PD to autophagy/mitophagy dysfunction, and discuss additional roles of both mitochondrial and cytosolic pools of PTEN-induced kinase 1 (PINK1) in mitochondrial homeostasis, dendritic morphogenesis and inflammation.


Assuntos
Autofagia , Mitofagia , Doença de Parkinson , Humanos , Mitocôndrias , Neurônios , Doença de Parkinson/genética , Proteínas Quinases
7.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493843

RESUMO

Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia. A computational simulation-based screen led to the identification of a small molecule, BC1464, which abrogated FBXO7 and PINK1 association, leading to increased cellular PINK1 concentrations and activities, and limiting mitochondrial damage. BC1464 exerted antiinflammatory activity in human tissue explants and murine lung inflammation models. Furthermore, BC1464 conferred neuroprotection in primary cortical neurons, human neuroblastoma cells, and patient-derived cells in several culture models of Parkinson's disease. The data highlight a unique opportunity to use small molecule antagonists that disrupt PINK1 interaction with the ubiquitin apparatus to enhance mitochondrial quality, limit inflammatory injury, and maintain neuronal viability.


Assuntos
Proteínas F-Box/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases/metabolismo , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Estabilidade Enzimática , Proteínas F-Box/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia
8.
J Alzheimers Dis ; 67(1): 137-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636740

RESUMO

BACKGROUND: Disruption of intracellular Ca2+ homeostasis and associated autophagy dysfunction contribute to neuropathology in Alzheimer's disease (AD). OBJECTIVE: To study the effects of propofol on cell viability via its effects on intracellular Ca2+ homeostasis, and the impact of autophagy, in a neuronal model of presenilin-mutated familial AD (FAD). METHODS: We treated PC12 cells, stably transfected with either mutated presenilin-1 (L286V) or wild type (WT) controls, with propofol at different doses and durations, in the presence or absence of extracellular Ca2+, antagonists of inositol trisphosphate receptors (InsP3R, xestospongin C) and/or ryanodine receptors (RYR, dantrolene), or an inhibitor of autophagy flux (Bafilomycin). We determined cell viability, cytosolic Ca2+ concentrations ([Ca2+]c), vATPase protein expression, and lysosomal acidification. RESULTS: The propofol dose- and time-dependently decreased cell viability significantly more in L286V than WT cells, especially at the pharmacological dose (>50µM), and together with bafilomycin (40 nM). Clinically used concentrations of propofol (<20µM) tended to increase cell viability. Propofol significantly increased [Ca2+]c more in L286V than in WT cells, which was associated with decrease of vATPase expression and localization to the lysosome. Both toxicity and increased Ca2+ levels were ameliorated by inhibiting InsP3R/RYR. However, the combined inhibition of both receptors paradoxically increased [Ca2+]c, by inducing Ca2+ influx from the extracellular space, causing greater cytotoxicity. CONCLUSION: Impairment in autophagy function acts to deteriorate cell death induced by propofol in FAD neuronal cells. Cell death is ameliorated by either RYR or InsP3R antagonists on their own, but not when both are co-administered.


Assuntos
Doença de Alzheimer/genética , Anestésicos Intravenosos/toxicidade , Autofagia/genética , Distúrbios do Metabolismo do Cálcio/genética , Distúrbios do Metabolismo do Cálcio/patologia , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Presenilina-1/genética , Propofol/toxicidade , Adenosina Trifosfatases/biossíntese , Animais , Distúrbios do Metabolismo do Cálcio/metabolismo , Humanos , Síndromes Neurotóxicas/metabolismo , Células PC12 , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
9.
Cancer Discov ; 9(3): 396-415, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563872

RESUMO

Resistance to BRAF and MEK inhibitors (BRAFi + MEKi) in BRAF-mutant tumors occurs through heterogeneous mechanisms, including ERK reactivation and autophagy. Little is known about the mechanisms by which ERK reactivation or autophagy is induced by BRAFi + MEKi. Here, we report that in BRAF-mutant melanoma cells, BRAFi + MEKi induced SEC61-dependent endoplasmic reticulum (ER) translocation of the MAPK pathway via GRP78 and KSR2. Inhibition of ER translocation prevented ERK reactivation and autophagy. Following ER translocation, ERK exited the ER and was rephosphorylated by PERK. Reactivated ERK phosphorylated ATF4, which activated cytoprotective autophagy. Upregulation of GRP78 and phosphorylation of ATF4 were detected in tumors of patients resistant to BRAFi + MEKi. ER translocation of the MAPK pathway was demonstrated in therapy-resistant patient-derived xenografts. Expression of a dominant-negative ATF4 mutant conferred sensitivity to BRAFi + MEKi in vivo. This mechanism reconciles two major targeted therapy resistance pathways and identifies druggable targets, whose inhibition would likely enhance the response to BRAFi + MEKi. SIGNIFICANCE: ERK reactivation and autophagy are considered distinct resistance pathways to BRAF + MEK inhibition (BRAFi + MEKi) in BRAF V600E cancers. Here, we report BRAFi + MEKi-induced ER translocation of the MAPK pathway is necessary for ERK reactivation, which drives autophagy. The ER translocation mechanism is a major druggable driver of resistance to targeted therapy.This article is highlighted in the In This Issue feature, p. 305.


Assuntos
Retículo Endoplasmático/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transporte Proteico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30783609

RESUMO

While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. Moreover, PINK1 regulates phosphorylation of p47, but not the VCP co-factor UFD1. Although neither VCP nor p47 interact directly with PKA, we found that PINK1 binds and phosphorylates the catalytic subunit of PKA at T197 [PKAcat(pT197)], a site known to activate the PKA holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway to orchestrate dendritogenesis in neurons. These findings highlight an important mechanism by which proteins genetically implicated in Parkinson's disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) interact to support the health and maintenance of neuronal arbors.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Proteínas Quinases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína com Valosina/metabolismo
11.
J Neurosci ; 37(46): 11151-11165, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29038245

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to development of late-onset familial Parkinson's disease (PD), with clinical features of motor and cognitive dysfunction indistinguishable from sporadic PD. Calcium dysregulation plays an important role in PD pathogenesis, but the mechanisms of neurodegeneration remain unclear. Recent reports indicate enhanced excitatory neurotransmission in cortical neurons expressing mutant LRRK2, which occurs before the well-characterized phenotype of dendritic shortening. As mitochondria play a major role in the rapid buffering of cytosolic calcium, we hypothesized that altered mitochondrial calcium handling contributes to dendritic retraction elicited by the LRRK2-G2019S and -R1441C mutations. In primary mouse cortical neurons, we observed increased depolarization-induced mitochondrial calcium uptake. We found that expression of mutant LRRK2 elicited transcriptional upregulation of the mitochondrial calcium uniporter (MCU) and the mitochondrial calcium uptake 1 protein (MICU1) with no change in levels of the mitochondrial calcium antiporter NCLX. Elevated MCU and MICU1 were also observed in LRRK2-mutated patient fibroblasts, along with increased mitochondrial calcium uptake, and in postmortem brains of sporadic PD/PDD patients of both sexes. Transcriptional upregulation of MCU and MICU1 was caused by activation of the ERK1/2 (MAPK3/1) pathway. Inhibiting ERK1/2 conferred protection against mutant LRRK2-induced neurite shortening. Pharmacological inhibitors or RNAi knockdown of MCU attenuated mitochondrial calcium uptake and dendritic/neuritic shortening elicited by mutant LRRK2, whereas expression of a constitutively active mutant of NCLX that enhances calcium export from mitochondria was neuroprotective. These data suggest that an increased susceptibility to mitochondrial calcium dysregulation contributes to dendritic injury in mutant LRRK2 pathogenesis.SIGNIFICANCE STATEMENT Cognitive dysfunction and dementia are common features of Parkinson's disease (PD), causing significant disability. Mutations in LRRK2 represent the most common known genetic cause of PD. We found that PD-linked LRRK2 mutations increased dendritic and mitochondrial calcium uptake in cortical neurons and familial PD patient fibroblasts, accompanied by increased expression of the mitochondrial calcium transporter MCU. Blocking the ERK1/2-dependent upregulation of MCU conferred protection against mutant LRRK2-elicited dendrite shortening, as did inhibiting MCU-mediated calcium import. Conversely, stimulating the export of calcium from mitochondria was also neuroprotective. These results implicate increased susceptibility to mitochondrial calcium overload in LRRK2-driven neurodegeneration, and suggest possible interventions that may slow the progression of cognitive dysfunction in PD.


Assuntos
Cálcio/metabolismo , Dendritos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença por Corpos de Lewy/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Dendritos/genética , Dendritos/patologia , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Gravidez
12.
J Neurochem ; 142(4): 545-559, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28556983

RESUMO

Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit ß of PKA (PKA/RIIß) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIß and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Células COS , Linhagem Celular , Feminino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Transporte Proteico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
13.
Retin Cases Brief Rep ; 11(4): 302-305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27315324

RESUMO

PURPOSE: To describe the first reported case of intraocular synovial sarcoma. METHODS: A 29-year-old man was enucleated for a blind, painful eye. Pathologic examination revealed an unexpected intraocular spindle cell tumor. RESULTS: Immunohistochemical characterization revealed diffuse reactivity of the tumor cells for vimentin and focal positivity for epithelial markers pankeratin and epithelial membrane antigen. Melanoma markers were negative. Fluorescent in situ hybridization studies identified a t(X;18) (p11.2;q11.2) translocation, establishing a final diagnosis of synovial sarcoma. There was no evidence of extraocular extension as the resected margin of the optic nerve was free of tumor. Further imaging studies revealed no extraocular primary site or metastasis. CONCLUSION: The incidental discovery of an intraocular malignancy in this case underscores the importance of routine histopathologic analysis of all enucleated globes. To the authors' knowledge, this is the first reported case of an intraocular synovial sarcoma, either as metastasis or as primary site.


Assuntos
Neoplasias Oculares/diagnóstico , Sarcoma Sinovial/diagnóstico , Adulto , Humanos , Masculino
14.
Cell Calcium ; 60(5): 356-362, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27593159

RESUMO

Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca2+. We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.


Assuntos
Exocitose , Lisossomos/metabolismo , Estresse Oxidativo , Cálcio/metabolismo , Exocitose/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Metais Pesados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/metabolismo , Células Tumorais Cultivadas
15.
Neurochem Int ; 96: 32-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26923918

RESUMO

Brain activities of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) are reduced in Alzheimer's disease and other age-related neurodegenerative disorders. The goal of the present study was to test the consequences of mild impairment of KGDHC on the structure, protein signaling and dynamics (mitophagy, fusion, fission, biogenesis) of the mitochondria. Inhibition of KGDHC reduced its in situ activity by 23-53% in human neuroblastoma SH-SY5Y cells, but neither altered the mitochondrial membrane potential nor the ATP levels at any tested time-points. The attenuated KGDHC activity increased translocation of dynamin-related protein-1 (Drp1) and microtubule-associated protein 1A/1B-light chain 3 (LC3) from the cytosol to the mitochondria, and promoted mitochondrial cytochrome c release. Inhibition of KGDHC also increased the negative surface charges (anionic phospholipids as assessed by Annexin V binding) on the mitochondria. Morphological assessments of the mitochondria revealed increased fission and mitophagy. Taken together, our results suggest the existence of the regulation of the mitochondrial dynamism including fission and fusion by the mitochondrial KGDHC activity via the involvement of the cytosolic and mitochondrial protein signaling molecules. A better understanding of the link among mild impairment of metabolism, induction of mitophagy/autophagy and altered protein signaling will help to identify new mechanisms of neurodegeneration and reveal potential new therapeutic approaches.


Assuntos
Doença de Alzheimer/enzimologia , Autofagia/fisiologia , Líquido Intracelular/enzimologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Organofosfonatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Succinatos/farmacologia
16.
Cell Rep ; 13(2): 376-86, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26440884

RESUMO

Mitochondrial Ca(2+) overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1) function, implicated in Parkinson disease, inhibits the mitochondrial Na(+)/Ca(2+) exchanger (NCLX), leading to impaired mitochondrial Ca(2+) extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA) pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLX(S258D)) prevents mitochondrial Ca(2+) overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca(2+) transport regulatory pathway that protects against mitochondrial Ca(2+) overload. Because mitochondrial Ca(2+) dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Potencial da Membrana Mitocondrial , Proteínas Quinases/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/toxicidade , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Fosforilação , Proteínas Quinases/genética , Trocador de Sódio e Cálcio/genética
17.
Biochim Biophys Acta ; 1852(9): 1902-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071643

RESUMO

Increased autophagy/mitophagy is thought to contribute to cerebellar dysfunction in Purkinje cell degeneration mice. Intriguingly, cerebellar Purkinje cells are highly vulnerable to hypoxia-ischemia (HI), related at least in part to their high metabolic activity. Whether or not excessive or supraphysiologic autophagy plays a role in Purkinje cell susceptibility to HI is unknown. Accordingly, we evaluated the role of autophagy in the cerebellum after global ischemia produced by asphyxial cardiac arrest in postnatal day (PND) 16-18 rats, using siRNA-targeted inhibition of Atg7, necessary for microtubule-associated protein light chain 3-II (LC3-II) and Atg12-Atg5 complex formation. Two days before a 9min asphyxial cardiac arrest or sham surgery, Atg7 or control siRNA was injected intracisternally to target the cerebellum. Treatment with Atg7 siRNA: 1) reduced Atg7 protein expression in the cerebellum by 56%; 2) prevented the typical ischemia-induced formation of LC3-II in the cerebellum 24h after asphyxial cardiac arrest; 3) improved performance on the beam-balance apparatus on days 1-5; and 4) increased calbindin-labeled Purkinje cell survival assessed on day 14. Improved Purkinje cell survival was more consistent in female vs. male rats, and improved beam-balance performance was only seen in female rats. Similar responses to Atg7 siRNA i.e. reduced autophagy and neurodegeneration vs. control siRNA were seen when exposing sex-segregated green fluorescent protein-LC3 tagged mouse primary cortical neurons to oxygen glucose deprivation in vitro. Thus, inhibition of autophagy after global ischemia in PND 16-18 rats leads to increased survival of Purkinje cells and improved motor performance in a sex-dependent manner.

18.
J Clin Invest ; 125(2): 521-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25562319

RESUMO

Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung.


Assuntos
Apoptose , Fibrose Pulmonar Idiopática/enzimologia , Mitocôndrias/metabolismo , Mitofagia , Proteínas Quinases/deficiência , Alvéolos Pulmonares/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Quinases/metabolismo , Alvéolos Pulmonares/patologia , Regulação para Cima/genética
19.
Stem Cell Res Ther ; 5(6): 140, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25523618

RESUMO

INTRODUCTION: Bone marrow mesenchymal stem cells/multipotent stromal cells (MSCs) are recruited to sites of injury and subsequently support regeneration through differentiation or paracrine activity. During periods of stress such as wound site implant or differentiation, MSCs are subjected to a variety of stressors that might activate pathways to improve cell survival and generate energy. In this study, we monitored MSC autophagy in response to the process of differentiation. METHODS: MSC autophagosome structures were observed by using transmission electron microscopy and a tandem green fluorescent protein-red fluorescent protein autophagic flux reporter to monitor the mammalian microtubule-associated protein-1 light chain 3 (LC3) turnover in real time. MSCs were differentiated by using standard osteogenic and adipogenic media, and autophagy was examined during short-term and long-term differentiation via immunoblots for LC3I and II. Autophagy was modulated during differentiation by using rapamycin and bafilomycin treatments to disrupt the autophagosome balance during the early stages of the differentiation process, and differentiation was monitored in the long term by using Von Kossa and Oil Red O staining as well as quantitative polymerase chain reaction analysis of typical differentiation markers. RESULTS: We found that undifferentiated MSCs showed an accumulation of a large number of undegraded autophagic vacuoles, with little autophagic turnover. Stimulation of autophagy with rapamycin led to rapid degradation of these autophagosomes and greatly increased rough endoplasmic reticulum size. Upon induction of osteogenic differentiation, MSC expression of LC3II, a common autophagosome marker, was lost within 12 hours, consistent with increased turnover. However, during adipogenic differentiation, drug treatment to alter the autophagosome balance during early differentiation led to changes in differentiation efficiency, with inhibited adipocyte formation following rapamycin treatment and accelerated fat accumulation following autophagosome blockade by bafilomycin. CONCLUSIONS: Our findings suggest that MSCs exist in a state of arrested autophagy with high autophagosome accumulation and are poised to rapidly undergo autophagic degradation. This phenotype is highly sensitive, and a balance of autophagy appears to be key in efficient MSC differentiation and function, as evidenced by our results implicating autophagic flux in early osteogenesis and adipogenesis.


Assuntos
Autofagia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Fagossomos/ultraestrutura , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo
20.
Exp Neurol ; 257: 170-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792244

RESUMO

The microtubule (MT) system is important for many aspects of neuronal function, including motility, differentiation, and cargo trafficking. Parkinson's disease (PD) is associated with increased oxidative stress and alterations in the integrity of the axodendritic tree. To study dynamic mechanisms underlying the neurite shortening phenotype observed in many PD models, we employed the well-characterized oxidative parkinsonian neurotoxin, 6-hydroxydopamine (6OHDA). In both acute and chronic sub-lethal settings, 6OHDA-induced oxidative stress elicited significant alterations in MT dynamics, including reductions in MT growth rate, increased frequency of MT pauses/retractions, and increased levels of tubulin acetylation. Interestingly, 6OHDA decreased the activity of tubulin deacetylases, specifically sirtuin 2 (SIRT2), through more than one mechanism. Restoration of tubulin deacetylase function rescued the changes in MT dynamics and prevented neurite shortening in neuron-differentiated, 6OHDA-treated cells. These data indicate that impaired tubulin deacetylation contributes to altered MT dynamics in oxidatively-stressed cells, conferring key insights for potential therapeutic strategies to correct MT-related deficits contributing to neuronal aging and disease.


Assuntos
Microtúbulos/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Sirtuína 2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complemento C1/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 2/genética , Fatores de Tempo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA