Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376487

RESUMO

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Assuntos
Balaenoptera , Neoplasias , Animais , Balaenoptera/genética , Duplicações Segmentares Genômicas , Genoma , Demografia , Neoplasias/genética
2.
Stem Cell Reports ; 18(12): 2328-2343, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949072

RESUMO

Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Suínos , Reprogramação Celular , Diferenciação Celular , Transgenes , Mamíferos
3.
Dev Biol ; 447(2): 157-169, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659795

RESUMO

DNA methyltransferase 1 (DNMT1) is required for embryogenesis but roles in late forming organ systems including the prostate, which emerges from the urethral epithelium, have not been fully examined. We used a targeted genetic approach involving a Shhcre recombinase to demonstrate requirement of epithelial DNA methyltransferase-1 (Dnmt1) in mouse prostate morphogenesis. Dnmt1 mutant urethral cells exhibit DNA hypomethylation, DNA damage, p53 accumulation and undergo cell cycle arrest and apoptosis. Urethral epithelial cells are disorganized in Dnmt1 mutants, leading to impaired prostate growth and maturation and failed glandular development. We evaluated oriented cell division as a mechanism of bud elongation and widening by demonstrating that mitotic spindle axes typically form parallel or perpendicular to prostatic bud elongation axes. We then deployed a ShhcreERT allele to delete Dnmt1 from a subset of urethral epithelial cells, creating mosaic mutants with which to interrogate the requirement for cell division in specific prostatic bud epithelial populations. DNMT1- cell distribution within prostatic buds is not random as would be expected in a process where DNMT1 was not required. Instead, replication competent DNMT1 + cells primarily accumulate in prostatic bud margins and tips while replication impeded DNMT1- cells accumulate in prostatic bud cores. Together, these results highlight the role of DNMT1 in regulating epithelial bud formation by maintaining cell cycle progression and survival of rapidly dividing urethral epithelial cells, which can be extended to the study of other developing epithelial organs. In addition, our results show that prostatic buds consist of two epithelial cell populations with distinct molecular and functional characteristics that could potentially contribute to specialized lineages in the adult prostate.


Assuntos
Ciclo Celular/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células Epiteliais/enzimologia , Organogênese/fisiologia , Próstata/embriologia , Uretra/embriologia , Animais , Sobrevivência Celular , DNA (Citosina-5-)-Metiltransferase 1/genética , Células Epiteliais/citologia , Masculino , Camundongos , Camundongos Transgênicos , Próstata/citologia , Uretra/citologia
4.
Proc Natl Acad Sci U S A ; 115(33): 8394-8399, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061411

RESUMO

The bladder's remarkable regenerative capacity had been thought to derive exclusively from its own progenitors. While examining consequences of DNA methyltransferase 1 (Dnmt1) inactivation in mouse embryonic bladder epithelium, we made the surprising discovery that Wolffian duct epithelial cells can support bladder regeneration. Conditional Dnmt1 inactivation in mouse urethral and bladder epithelium triggers widespread apoptosis, depletes basal and intermediate bladder cells, and disrupts uroplakin protein expression. These events coincide with Wolffian duct epithelial cell recruitment into Dnmt1 mutant urethra and bladder where they are reprogrammed to express bladder markers, including FOXA1, keratin 5, P63, and uroplakin. This is evidence that Wolffian duct epithelial cells are summoned in vivo to replace damaged bladder epithelium and function as a reservoir of cells for bladder regeneration.


Assuntos
Bexiga Urinária/fisiologia , Urotélio/fisiologia , Ductos Mesonéfricos/fisiologia , Animais , Animais Recém-Nascidos , Apoptose , Linhagem da Célula , DNA (Citosina-5-)-Metiltransferase 1/fisiologia , Dano ao DNA , Metilação de DNA , Células Epiteliais/fisiologia , Camundongos , Regeneração
5.
Stem Cell Reports ; 3(6): 1043-57, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25458896

RESUMO

During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that "trap" murine cells in a proliferative state and endow them with a hemangioblast potential. These "expandable" hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Animais , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Perfilação da Expressão Gênica , Hemangioblastos/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Imunofenotipagem , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Transcriptoma
6.
PLoS Comput Biol ; 9(3): e1002936, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505351

RESUMO

The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.


Assuntos
Ambystoma mexicanum/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Oncogenes , Análise de Sequência de RNA/métodos , Ambystoma mexicanum/genética , Amputação Cirúrgica , Animais , Análise por Conglomerados , Extremidades/lesões , Extremidades/fisiologia , Regeneração/genética , Regeneração/fisiologia , Regulação para Cima , Cicatrização/genética , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA