Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Anal Chem ; 96(42): 16910-16916, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39395064

RESUMO

Rapid and sensitive detection of the concentration of sialic acid (SA) in serum is crucial for early tumor screening and prognostic assessment; however, it still remains challenging. Here, we propose a novel kind of hydrogel grating sensor with boron affinity and molecular imprinting effects (B-MIP) for the rapid and sensitive detection of SA concentration in serum. The hydrogel gratings feature uniform surface relief microstructures and incorporate highly specific recognition binding sites into SA molecules provided by boron affinity and molecular imprinting. The periodic nanoridges of hydrogel gratings increase the specific surface area contacting the environmental solution; therefore, fast detection can be achieved within 2 min. Upon recognition of SA molecules, the height of hydrogel gratings changes at the nanoscale, causing a change in the diffraction efficiency of the hydrogel gratings. The B-MIP hydrogel grating sensors have highly specific binding sites to SA molecules distributed throughout the whole hydrogel and can preferentially and selectively recognize and respond to the SA molecules even in the presence of interference substances glucose and fructose with high concentrations. The B-MIP hydrogel grating sensors are effectively applicable for the rapid and sensitive detection of SA concentrations in real serum samples with satisfactory accuracy and precision. Our approach provides an excellent strategy to address the current challenges in SA detection and provides new insights into the detection of tumor markers in serum, thereby opening up new ways to accurately detect complex biological samples in analytical science.


Assuntos
Biomarcadores Tumorais , Boro , Hidrogéis , Impressão Molecular , Ácido N-Acetilneuramínico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Humanos , Boro/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/análise , Hidrogéis/química , Técnicas Biossensoriais
2.
Lab Chip ; 24(14): 3556-3567, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949110

RESUMO

A facile strategy for efficient and continuous fabrication of monodisperse gas-core microcapsules with controllable sizes and excellent ultrasound-induced burst performances is developed based on droplet microfluidics and interfacial polymerization. Monodisperse gas-in-oil-in-water (G/O/W) double emulsion droplets with a gas core and monomer-contained oil layer are fabricated in the upstream of a microfluidic device as templates, and then water-soluble monomers are added into the aqueous continuous phase in the downstream to initiate rapid interfacial polymerization at the O/W interfaces to prepare monodisperse gas-in-oil-in-solid (G/O/S) microcapsules with gas cores. The sizes of both microbubbles and G/O/W droplet templates can be precisely controlled by adjusting the gas supply pressure and the fluid flow rates. Due to the very thin shells of G/O/S microcapsules fabricated via interfacial polymerization, the sizes of the resultant G/O/S microcapsules are almost the same as those of the G/O/W droplet templates, and the microcapsules exhibit excellent deformable properties and ultrasound-induced burst performances. The proposed strategy provides a facile and efficient route for controllably and continuously fabricating monodisperse microcapsules with gas cores, which are highly desired for biomedical applications.

3.
Biochem Pharmacol ; 226: 116348, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852642

RESUMO

Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.


Assuntos
Gasderminas , Neoplasias , Humanos , Apoptose , Gasderminas/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Piroptose
4.
Environ Toxicol ; 39(7): 3920-3929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38567545

RESUMO

Osteosarcoma is a malignant bone tumor affecting adolescents and children. No effective treatment is currently available. Asiatic acid (AA), a triterpenoid compound found in Centella asiatica, possesses anti-tumor, anti-inflammatory, and anti-oxidant properties in various types of tumor cells. This study aims to determine whether AA exerts antitumor effects in human osteosarcoma cells. Our results indicate that AA does not influence the viability, proliferative rate, or cell cycle phase of human osteosarcoma cells under non-toxic conditions. AA suppressed osteosarcoma cell migration and invasion by down-regulating matrix metalloproteinase 1 (MMP1) expression. Data in the TNMplot database suggested MMP1 expression was higher in osteosarcoma than in normal tissues, with associated clinical significance observed in osteosarcoma patients. Overexpression of MMP1 in osteosarcoma cells reversed the AA-induced suppression of cell migration and invasion. AA treatment decreased the expression of specificity protein 1 (Sp1), while Sp1 overexpression abolished the effect of AA on MMP1 expression and cell migration and invasion. AA inhibited AKT phosphorylation, and treatment with a PI3K inhibitor (wortmannin) increased the anti-invasive effect of AA on osteosarcoma cells via the p-AKT/Sp1/MMP1 axis. Thus, AA exhibits the potential for use as an anticancer drug against human osteosarcoma.


Assuntos
Movimento Celular , Metaloproteinase 1 da Matriz , Osteossarcoma , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição Sp1 , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Movimento Celular/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Sp1/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
5.
Environ Toxicol ; 39(5): 2961-2969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308464

RESUMO

Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.


Assuntos
Chalconas , Neoplasias do Endométrio , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Transdução de Sinais , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Regulação para Cima , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/metabolismo
6.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247171

RESUMO

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Angiogênese , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Lisina , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
7.
Cancer Lett ; 583: 216584, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38123014

RESUMO

Magnolin (MGL), a compound derived from the magnolia plant, has inhibitory effects on tumor cell invasion and growth. His study aims to explore the antitumor effect and underlying molecular mechanism of MGL against human cervical cancer. We found that MGL inhibited the proliferation, migration, and invasiveness of cervical cancer cells in vitro and in vivo. The underlying mechanism was shown to involve MGL-induced inhibition of JNK/Sp1-mediated MMP15 transcription and translation. Overexpression of JNK/Sp1 resulted in significant restoration of MMP15 expression and the migration and invasion capabilities of MGL-treated cervical cancer cells. MGL modulated the cervical cancer microenvironment by inhibiting cell metastasis via targeting IL-10/IL-10 receptor B (IL-10RB) expression, thereby attenuating JNK/Sp1-mediated MMP15 expression. Analysis of the gut microbiota of mice fed MGL revealed a significant augmentation in Lachnospiraceae bacteria, known for their production of sodium butyrate. In vivo experiments also demonstrated synergistic inhibition of cervical cancer cell metastasis by MGL and sodium butyrate co-administration. Our study provides pioneering evidence of a novel mechanism by which MGL inhibits tumor growth and metastasis through the IL-10/IL-10RB targeting of the JNK/Sp1/MMP15 axis in human cervical cancer cells.


Assuntos
Lignanas , Microbiota , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Metaloproteinase 15 da Matriz , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ácido Butírico/farmacologia , Interleucina-10 , Microambiente Tumoral , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Fator de Transcrição Sp1/metabolismo
8.
Parasit Vectors ; 16(1): 450, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066526

RESUMO

BACKGROUND: The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS: The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS: In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-ß) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS: The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.


Assuntos
Echinococcus granulosus , Sepse , Camundongos , Animais , Echinococcus granulosus/metabolismo , Líquido Cístico/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Lipopolissacarídeos
9.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928273

RESUMO

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Proteína Centromérica A , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Fator de Transcrição YY1/genética , Proteína Centromérica A/metabolismo
10.
Nano Lett ; 23(20): 9657-9663, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37548909

RESUMO

Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.

11.
Adv Healthc Mater ; 12(21): e2300873, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37265189

RESUMO

Transcatheter arterial radioembolization (TARE) is of great significance for the treatment of advanced hepatocellular carcinoma (HCC). However, the existing radioembolic microspheres still have problems such as non-degradability, non-uniform size, and inability to directly monitor in vivo, which hinders the development of TARE. In this paper, a novel radioembolic agent, 131 I-labeled methacrylated gelatin microspheres (131 I-GMs), is prepared for the treatment of HCC. Water-in-oil (W/O) emulsion templates are prepared by a simple one-step microfluidic method to obtain methacrylated gelatin microspheres (GMs) after UV irradiation. A series of GMs with uniform and controllable size is obtained by adjusting the flow rate of each fluid. Both air-dried and freeze-dried GMs can quickly restore their original shape and size, and still have good monodispersity, elasticity, and biocompatibility. The radiolabeling experiments show that 131 I can efficiently bind to GMs by chloramine-T method, and the obtained 131 I-GMs have good radioactive stability in vitro. The results of in vivo TARE treatment in rats show that 131 I-GMs can be well retained in the hepatic artery and have a good inhibitory effect on the progression of liver cancer, showing the potential for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/radioterapia , Microesferas , Gelatina , Microfluídica
12.
Cell Mol Biol Lett ; 27(1): 79, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138344

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play crucial roles in the development of hepatocellular carcinoma (HCC). Hsa-microRNA-27b-3p (hsa-miR-27b) is involved in the formation and progression of various cancers, but its role and clinical value in HCC remain unclear. METHODS: The expression of hsa-miR-27b in HCC was examined by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) assays of clinical samples. Cell Counting Kit-8 assays (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, Transwell assays, filamentous actin (F-actin) staining and western blot analyses were used to determine the effects of hsa-miR-27b on HCC cells in vitro. Subcutaneous xenograft and lung metastatic animal experiments were conducted to verify the role of hsa-miR-27b in HCC in vivo. In silico prediction, qRT-PCR, western blot, anti-Argonaute 2 (AGO2) RNA immunoprecipitation (RIP) and dual luciferase reporter assays were applied to identify the target genes of hsa-miR-27b. To detect the impacts of hsa-miR-27b on nuclear factor kappa B (NF-кB) signalling cascades mediated by transforming growth factor-activated kinase-binding protein 3 (TAB3), we performed qRT-PCR, western blot assays, immunofluorescence staining, immunohistochemistry (IHC) and dual-luciferase reporter assays. Recombinant oncolytic adenovirus (OncoAd) overexpressing hsa-miR-27b was constructed to detect their therapeutic value in HCC. RESULTS: The expression of hsa-miR-27b was lower in HCC than in adjacent non-tumourous tissues (ANTs), and the reduced expression of hsa-miR-27b was associated with worse outcomes in patients with HCC. Hsa-miR-27b significantly inhibited the proliferation, migration, invasion, subcutaneous tumour growth and lung metastasis of HCC cells. The suppression of hsa-miR-27b promoted the nuclear translocation of NF-κB by upregulating TAB3 expression. TAB3 was highly expressed in HCC compared with ANTs and was negatively correlated with the expression of hsa-miR-27b. The impaired cell proliferation, migration and invasion by hsa-miR-27b overexpression were recovered by ectopic expression of TAB3. Recombinant OncoAd with overexpression of hsa-miR-27b induced anti-tumour activity compared with that induced by negative control (NC) OncoAd in vivo and in vitro. CONCLUSIONS: By targeting TAB3, hsa-miR-27b acted as a tumour suppressor by inactivating the NF-кB pathway in HCC in vitro and in vivo, indicating its therapeutic value against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Actinas/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo
13.
Front Oncol ; 12: 902820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847898

RESUMO

Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.

14.
Exp Hematol Oncol ; 11(1): 30, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590394

RESUMO

As the most common and abundant RNA modification in eukaryotic cells, N6-methyladenosine (m6A) modification plays an important role in different stages of tumor. m6A can participate in the regulation of tumor immune escape, so as to enhance the monitoring of tumor by the immune system and reduce tumorgenesis. m6A can also affect the tumor progression by regulating the immune cell responses to tumor in tumor microenvironment. In addition, immunotherapy has become the most popular method for the treatment of cancer, in which targets such as immune checkpoints are also closely associated with m6A. This review discusses the roles of N6-methyladenosine modification in tumor immune regulation, their regulatory mechanism, and the prospect of immunotherapy.

15.
Cell Death Discov ; 8(1): 137, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351856

RESUMO

YT521-B homology (YTH) domain-containing proteins (YTHDF1-3, YTHDC1-2) are the most crucial part of N6-methyladenosine (m6A) readers and play a regulatory role in almost all stages of methylated RNA metabolism and the progression of various cancers. Since m6A is identified as an essential post-transcriptional type, YTH domain-containing proteins have played a key role in the m6A sites of RNA. Hence, it is of great significance to study the interaction between YTH family proteins and m6A-modified RNA metabolism and tumor. In this review, their basic structure and physical functions in RNA transcription, splicing, exporting, stability, and degradation as well as protein translation are introduced. Then we discussed the expression regulation of YTH domain-containing proteins in cancers. Furthermore, we introduced the role of the YTH family in cancer biology and systematically demonstrated their functions in various aspects of tumorigenesis and development. To provide a more institute understanding of the role of YTH family proteins in cancers, we summarized their functions and specific mechanisms in various cancer types and presented their involvement in cancer-related signaling pathways.

16.
Membranes (Basel) ; 12(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35323774

RESUMO

One major challenge in the development of nanoparticle-based therapeutics, including viral vectors for the delivery of gene therapies, is the development of cost-effective purification technologies. The objective of this study was to examine fouling and retention behaviors during the filtration of model nanoparticles through membranes of different pore sizes and the effect of solution conditions. Data were obtained with 30 nm fluorescently labeled polystyrene latex nanoparticles using both cellulosic and polyethersulfone membranes at a constant filtrate flux, and both pressure and nanoparticle transmission were evaluated as a function of cumulative filtrate volume. The addition of NaCl caused a delay in nanoparticle transmission and an increase in fouling. Nanoparticle transmission was also a function of particle hydrophobicity. These results provide important insights into the factors controlling transmission and fouling during nanoparticle filtration as well as a framework for the development of membrane processes for the purification of nanoparticle-based therapeutics.

17.
Cell Death Differ ; 29(5): 988-1003, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35034103

RESUMO

Recent evidence suggests that small nucleolar RNAs (snoRNAs) are involved in the progression of various cancers, but their precise roles in hepatocellular carcinoma (HCC) remain largely unclear. Here, we report that SNORD17 promotes the progression of HCC through a positive feedback loop with p53. HCC-related microarray datasets from the Gene Expression Omnibus (GEO) database and clinical HCC samples were used to identify clinically relevant snoRNAs in HCC. SNORD17 was found upregulated in HCC tissues compared with normal liver tissues, and the higher expression of SNORD17 predicted poor outcomes in patients with HCC, especially in those with wild-type p53. SNORD17 promoted the growth and tumorigenicity of HCC cells in vitro and in vivo by inhibiting p53-mediated cell cycle arrest and apoptosis. Mechanistically, SNORD17 anchored nucleophosmin 1 (NPM1) and MYB binding protein 1a (MYBBP1A) in the nucleolus by binding them simultaneously. Loss of SNORD17 promoted the translocation of NPM1 and MYBBP1A into the nucleoplasm, leading to NPM1/MDM2-mediated stability and MYBBP1A/p300-mediated activation of p53. Interestingly, p300-mediated acetylation of p53 inhibited SNORD17 expression by binding to the promoter of SNORD17 in turn, forming a positive feedback loop between SNORD17 and p53. Administration of SNORD17 antisense oligonucleotides (ASOs) significantly suppressed the growth of xenograft tumors in mice. In summary, this study suggests that SNORD17 drives cancer progression by constitutively inhibiting p53 signaling in HCC and may represent a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Nucleolar Pequeno , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Nucleofosmina/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
Langmuir ; 38(3): 1277-1286, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35015552

RESUMO

It is well-known that surfactants tend to aggregate into clusters or micelles in aqueous solutions due to their special structures, and it is difficult for the surfactant molecules involved in the aggregation to move spontaneously to the oil-water interface. In this article, we developed a new grand-canonical molecular dynamics (GCMD) model to predict the saturated adsorption amount of surfactant with constant concentration of surfactant molecules in the bulk phase, which can prevent surfactants aggregating in the bulk phase and get the atomic details of the interfacial structural change with increase of the adsorption amount through a single GCMD run. The adsorption of anionic surfactant sodium dodecyl sulfate (SDS) at the heptane-water interface was studied to validate the model. The saturated adsorption amount obtained from the GCMD simulation is consistent with the experimental results. The adsorption kinetics of SDS molecules during the simulation can be divided into three stages: linear adsorption stage, transition adsorption stage, and dynamic equilibrium stage. We also carried out equilibrium molecular dynamics (EMD) simulations to compare with GCMD simulation. This GCMD model can effectively reduce the simulation time with correct prediction of the interfacial saturation adsorption. We believe the GCMD method could be especially helpful for the computational study of surfactant adsorption under complex environments or emulsion systems with the adsorption of multiple types of surfactants.

19.
Am J Chin Med ; 50(1): 313-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963428

RESUMO

18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.


Assuntos
Carcinoma Hepatocelular , Ácido Glicirretínico , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Ácido Glicirretínico/farmacologia , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
20.
Front Cell Dev Biol ; 9: 760980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901005

RESUMO

Atherosclerosis is a chronic inflammation of the arterial vessel wall driven by lipid metabolism disorders. Although helminthic infection and their derivatives have been identified to attenuate the chronic inflammatory diseases, the immunomodulatory effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) on metabolic diseases and atherosclerosis has not been reported. In this study, we investigated the therapeutic efficacy of rSj-Cys on atherosclerotic renal damage and explored the related immunological mechanism. The results demonstrated that treatment with rSj-Cys significantly reduced body weight gain, hyperlipidemia, and atherosclerosis induced by the high-fat diet in apoE-/- mice. The treatment of rSj-Cys also significantly improved kidney functions through promoting macrophage polarization from M1 to M2, therefore inhibiting M1 macrophage-induced inflammation. The possible mechanism underlying the regulatory effect of rSj-Cys on reducing atherosclerosis and atherosclerotic renal damage is that rSj-Cys stimulates regulatory T cell and M2 macrophage polarization that produce regulatory cytokines, such as interleukin 10 and transforming growth factor ß. The therapeutic effect of rSj-Cys on atherosclerotic renal damage is possibly through inhibiting the activation of TLR2/Myd88 signaling pathway. The results in this study provide evidence for the first time that Schistosoma-derived cystatin could be developed as a therapeutic agent to treat lipid metabolism disorder and atherosclerosis that threats million lives around the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA