Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949046

RESUMO

It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit. Results illustrate that the recovery rate of the ELISA method can be controlled between 90% and 110%, the variation coefficient of intra-assay can be controlled within 16%, and the variation coefficient of inter-assay can be controlled within 10%. There is no non-specific reaction with common tumor markers, and the detection limit can reach 0.125 ng mL-1. The results show that the KIN17 protein can be detected by ELISA, and there is a significant rise in KIN17 concentration in a liver cancer group compared with a healthy group, whose average concentrations are 1.730 ng mL-1 and 0.3897 ng mL-1, respectively. On this basis, we hypothesize that the serum KIN17 protein can serve as a potential biomarker of liver cancer and be measurable with the verified ELISA system after specific ultrafiltration and centrifugation, which is of great significance for the diagnosis and treatment of liver cancer.

2.
Talanta ; 269: 125399, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979506

RESUMO

Antisense oligonucleotide (ASO) is a powerful agent for gene therapy, designed to form complementary pairs with specific mRNA to inhibit gene expression. However, low specificity limits its potential. To overcome this challenge, we developed a Y-shape DNA nanostructure that enhances the specificity in ASO-based treatment by introducing a detection trigger. The design incorporates the phenotype-specific miR21 activation and the sequential release of Bcl2 ASO. As a result, our Y-shape DNA nanostructure downregulates >50 % Bcl2 mRNA expression and induces >60 % cell death in breast cancer cells. Meanwhile, this approach shows no obvious damage to the non-cancerous cells, indicating the therapeutic potential as a theranostics agent in precision medicine with the combination of biomarker sensing and treatment. Overall, our Y-shape DNA nanostructure serves as a promising strategy providing potential in customized conformation design with specific target sequences in gene therapy.


Assuntos
Nanoestruturas , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Medicina de Precisão , DNA , Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Mensageiro/genética , Fenótipo
3.
Biosens Bioelectron ; 220: 114859, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368142

RESUMO

Flap endonuclease 1 (FEN1) is an endonuclease that specially removes 5' single-stranded overhang of branched duplex DNA (5' flap). While FEN1 is essential in various DNA metabolism pathways for preventing the malignant transformation of cells, an unusual expression of FEN1 is often associated with tumor progression, making it a potential biomarker for cancer diagnosis and treatment. Here we report a multimodal detection of FEN1 activity based on CRISPR/Cas12a trans-cleavage of single-strand DNA oligonucleotides (ssDNA). A dumbbell DNA structure with a 5' flap was designed, which can be cleaved by the FEN1 and the dumbbell DNA is subsequently ligated by T4 DNA ligase. The resulting closed duplex DNA contains a specific protospacer adjacent motif (PAM) that activates trans-cleavage of ssDNA after binding to CRISPR/Cas12a-crRNA. The trans-cleavage is activated only once and is independent to length or sequence of the ssDNA, which allows efficient signal amplification and multimodal signals such as fluorescence or cleaved connection between magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that alters solution turbidity after magnetic separation. In addition, by loading the particle solution into a microfluidic chip, unconnected PMPs escaping from a magnetic separator are amassed at the particle dam, enabling a visible PMP accumulation length proportional to the FEN1 activity. This multimodal detection is selective to FEN1 and achieves a low limit of detection (LOD) with only 40 min of reaction time. Applying to cell lysates, higher FEN1 activity was detected in breast cancer cells, suggesting a great potential for cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Endonucleases Flap , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Oligonucleotídeos , Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples , DNA/química
4.
Anal Chim Acta ; 1160: 338444, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894969

RESUMO

Cadmium (Cd2+) is a toxic metal ion widely existing in water, soil and food. Conventional water quality control heavily relies on expensive, bulky and sophisticated instrument such as spectrometry, which is time-consuming and incompatible with on-site, real-time detection. Here, a portable microfluidic device with thermometer-like visual readouts is developed for real-time quantitation of cadmium (II) contamination in drinking water. We use Cd2+-dependent DNAzyme (Cd16), which is cleaved when Cd2+ is present, creating a single strand DNA which triggers catalytic hairpin assembly (CHA) with two hairpins H1 and H2 as the building blocks. Plenty of H1H2 complex, the product after the Cd2+-mediated CHA, are generated, which can connect magnetic microparticles (MMPs) and polystyrene microparticles (PMPs), forming "MMPs-H1H2-PMPs" sandwich structure. To provide visual readout to quantitate the particle connection, the particle solution is loaded into a portable microfluidic chip. A magnetic separator first removes MMPs and the connected PMPs, while free PMPs can continue flowing until accumulating into a bar at the particle dam. Shown as a thermometer-like display, the accumulating length is inversely proportional to the concentration of Cd2+, enabling quantitative detection of Cd2+ by the naked eye. The proposed device exhibits a limit of detection of 11.3 nM of Cd2+, selectivity >200-fold against other metal ions, high tolerance to the interferents present in drinking water and high recovery rate in tap water. With high analytical performance without any sample preparation step, this portable device is highly promising in real-time monitoring in urban drinking water at sites.


Assuntos
Água Potável , Dispositivos Lab-On-A-Chip , Cádmio , Água Potável/análise , Microfluídica , Termômetros
5.
Adv Biosyst ; 4(10): e2000161, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864891

RESUMO

Cell chirality is observed with diverse forms and coordinates various left-right (LR) asymmetry in tissue morphogenesis. To give rise to such diversity, cell chirality may be coupled with cell differentiation. Here, using micropatterned human mesenchymal stem cells (hMSCs), an early committed clockwise (CW) cell chirality that can itself upregulate the adipogenic differentiation is reported. hMSC chirality enables a positively tilted chiral orientation on micropatterned stripes. When cultured as single cells on circular micropatterns, an anticlockwise (ACW)-biased nucleus rotation and swirling pattern of actin filament are observed. Interestingly, with adipogenic induction for 3-6 days, such chirality is reversed to negative chiral orientation and CW-biased rotation, which is earlier than the maturation of other differentiation markers, and consistently expressed in terminally differentiated adipocytes. Using latrunculin A (LatA), cytochalasin D (CD), and nocodazole (Noco) that forces a CW-biased actin filament and nucleus rotation resembling the early differentiated chirality upon adipogenic induction, an upregulation of adipogenic differentiation is found. The result demonstrates that the early differentiated chirality may serve as a mechanical precursor to engage the lineage commitment, suggesting a feedback mechanism of chiral actin in regulating cell differentiation and LR morphogenesis.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Morfogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Humanos
6.
ACS Appl Mater Interfaces ; 7(41): 22821-30, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26430877

RESUMO

Visual detection of nucleic acids provides simple and rapid screening for infectious diseases or environmental pathogens. However, sensitivity is the current bottleneck, which may require enzymatic amplification for targets in low abundance and make them incompatible with detection at resource-limited sites. Here we report an enzyme-free amplification that provides a sensitive visual detection of ssDNA/RNA oligonucleotides on the basis of nano "sticky balls". When target oligonucleotides are present, magnetic microparticles (MMPs) and gold nanoparticles (AuNPs) were linked together, allowing the collection of AuNPs after magnetic attraction. Subsequently, the collected AuNPs, which carry many oligonucleotides, were used as the sticky balls to link a second pair of MMPs and polymer microparticles (PMPs). Thus, because the magnetic field can attract the MMPs as well as the linked PMPs to the sidewall, the reduction of suspended PMPs yields a change of light transmission visible by the naked eye. Our results demonstrate that the limit of detection is 10 amol for ssDNAs (228 fM in 45 µL) and 75 amol for ssRNAs (1.67 pM in 45 µL). This method is also compatible with the serum environment and detection of a microRNA, miR-155, derived from human breast cancer cells. With significantly improved sensitivity for visual detection, it provides great potential for point-of-care applications at resource-limited sites.


Assuntos
DNA de Cadeia Simples/análise , Enzimas/metabolismo , Nanopartículas Metálicas/química , Oligonucleotídeos/análise , RNA/análise , Fricção , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA