Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118125, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561055

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a Chinese medicine with a long history of therapeutic application. It is widely used in treating atherosclerosis (AS) in Chinese medicine theory and clinical practice. However, the mechanism of HLJDD in treating AS remains unclear. AIM OF THE STUDY: To investigate the efficacy and mechanism of HLJDD in treating AS. MATERIALS AND METHODS: AS was induced on high-fat diet-fed ApoE-/- mice, with the aorta pathological changes evaluated with lipid content and plaque progression. In vitro, foam cells were induced by subjecting primary mouse aortic vascular smooth muscle cells (VSMCs) to oxLDL incubation. After HLJDD intervention, VSMCs were assessed with lipid stack, apoptosis, oxidative stress, and the expression of foam cell markers. The effects of P2RY12 were tested by adopting clopidogrel hydrogen sulfate (CDL) in vivo and transfecting P2RY12 over-expressive plasmid in vitro. Autophagy was inhibited by Chloroquine or transfecting siRNA targeting ATG7 (siATG7). The mechanism of HLJDD treating atherosclerosis was explored using network pharmacology and validated with molecular docking and co-immunoprecipitation. RESULTS: HLJDD exhibited a dose-dependent reduction in lipid deposition, collagen loss, and necrosis within plaques. It also reversed lipid accumulation and down-regulated the expression of foam cell markers. P2RY12 inhibition alleviated AS, while P2RY12 overexpression enhanced foam cell formation and blocked the therapeutic effects of HLJDD. Network pharmacological analysis suggested that HLJDD might mediate PI3K/AKT signaling pathway-induced autophagy. P2RY12 overexpression also impaired autophagy. Similarly, inhibiting autophagy counteracted the effect of CDL, exacerbated AS in vivo, and promoted foam cell formation in vitro. However, HLJDD treatment mitigated these detrimental effects by suppressing the PI3K/AKT signaling pathway. Immunofluorescence and molecular docking revealed a high affinity between P2RY12 and PIK3CB, while co-immunoprecipitation assays illustrated their interaction. CONCLUSIONS: HLJDD inhibited AS in vivo and foam cell formation in vitro by restoring P2RY12/PI3K/AKT signaling pathway-suppressed autophagy. This study is the first to reveal an interaction between P2RY12 and PI3K3CB.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Camundongos , Animais , Células Espumosas , Músculo Liso Vascular , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Autofagia
2.
Phytomedicine ; 129: 155617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614041

RESUMO

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Iridoides , Fosfatidilinositol 3-Quinases , Poli(ADP-Ribose) Polimerase-1 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Iridoides/farmacologia , Aterosclerose/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Autofagia/efeitos dos fármacos , Gardenia/química , Músculo Liso Vascular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Farmacologia em Rede , Lipoproteínas LDL
3.
Oxid Med Cell Longev ; 2022: 4299892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186186

RESUMO

Sick sinus syndrome (SSS), a complex type of cardiac arrhythmia, is a major health threat to humans. Shenfu injection (SFI), a formula of traditional Chinese medicine (TCM), is effective in improving bradyarrhythmia. However, the underlying mechanism of SFI's therapeutic effect is subject to few systematic investigations. The purpose of the present research is to examine whether SFI can boost the differentiation effectiveness of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells and whether the transplantation of these cells can improve the pacing function of the sinoatrial node (SAN) in a rabbit model of SSS. BMSCs from New Zealand rabbits were extracted, followed by incubation in vitro. The flow cytometry was utilized to identify the expression of CD29, CD44, CD90, and CD105 surface markers. The isolated BMSCs were treated with SFI, and the whole-cell patch-clamp method was performed to detect hyperpolarization-the activated cyclic nucleotide-gated potassium channel 4 (HCN4) channel current activation curve. The SSS rabbit model was established using the formaldehyde wet dressing method, and BMSCs treated with SFI were transplanted into the SAN of the SSS rabbit model. We detected changes in the body-surface electrocardiogram and recorded dynamic heart rate measurements. Furthermore, transplanted SFI-treated BMSCs were subjected to HE staining, TUNEL staining, qPCR, western blotting, immunofluorescence, immunohistochemistry, and enzyme-linked immunosorbent assay to study their characteristics. Our results indicate that the transplantation of SFI-treated BMSCs into the SAN of SSS rabbits improved the pacing function of the SAN. In vitro data showed that SFI induced the proliferation of BMSCs, promoted their differentiation capacity into pacemaker-like cells, and increased the HCN4 expression in BMSCs. In vivo, the transplantation of SFI treated-BMSCs preserved the function of SAN in SSS rabbits, improved the expression of the HCN4 gene and gap junction proteins (Cx43 and Cx45), and significantly upregulated the expression of cAMP in the SAN, compared to the SSS model group. In summary, the present research demonstrated that SFI might enhance the differentiation capacity of BMSCs into pacemaker-like cells, hence offering a novel approach for the development of biological pacemakers. Additionally, we confirmed the effectiveness and safety of pacemaker-like cells differentiated from BMSCs in improving the pacing function of the SAN.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Síndrome do Nó Sinusal/tratamento farmacológico , Nó Sinoatrial/efeitos dos fármacos , Animais , Diferenciação Celular , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Masculino , Coelhos , Transfecção
4.
Artigo em Inglês | MEDLINE | ID: mdl-34457032

RESUMO

We investigated the effects of Shenfu Injection (SFI) on HCN4 activity in bone marrow mesenchymal stem cells (BMSCs). The sample of BMSCs was divided into six groups: a control group, a high-dose SFI group (0.25 ml/ml), a middle-dose SFI group (0.1 ml/ml), a low-dose SFI group (0.05 ml/ml), an adenovirus-encoded control vector group, and an adenovirus-encoded HCN4 group. Cell ultrastructure was observed using a transmission electron microscope. Quantitative reverse transcription PCR (RT-qPCR) was performed to detect HCN4 expression, and HCN4 activity was detected using the whole-cell patch clamp technique. An enzyme-linked immunosorbent assay was performed to detect cAMP content. Application of flow cytometry confirmed that the isolated cells showed BMSC-like phenotypes. Differentiation of BMSCs in both the SFI and the adenovirus-encoding HCN4 groups occurred according to the cellular ultrastructure. Application of the whole-cell patch clamp technique revealed that SFI could activate the inward pacing current of BMSCs in a concentration-dependent manner. The RT-qPCR results showed that HCN4 expression was significantly higher in the high-dose SFI group than in the medium- and low-dose groups, whereas the cAMP content in the overexpressed HCN4 group decreased significantly; this content in the high-dose SFI group increased significantly. In conclusion, SFI promotes HCN4 activity in BMSCs, which could explain its treatment effect when administered to patients with cardiovascular diseases.

5.
Biomed Pharmacother ; 125: 110015, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32187958

RESUMO

OBJECTIVE: To assess geniposide's effects in New Zealand rabbits with high-fat diet induced atherosclerosis and to explore the underpinning mechanisms. MATERIALS AND METHODS: Aorta histological changes were evaluated by intravenous ultrasound (IVUS) and H&E staining. Lipid accumulation in the aortic was quantified by Oil Red O staining. Then, RNA sequencing (RNA-seq) was carried out for detecting differentially expressed genes in rabbit high-fat diet induced atherosclerosis. The levels of the cytokines CRP, IL-1ß and IL-10 were determined by ELISA. Protein levels of iNOS and Arg-1 were assessed by Western blot and immunohistochemical staining. The mRNA expression levels of NR4A1, CD14, FOS, IL1A, iNOS and Arg-1 were detected by quantitative real-time PCR (qPCR). RESULTS: Geniposide markedly reduced the degree of atherosclerotic lesions in aorta tissues. RNA-seq and qPCR demonstrated that NR4A1, CD14, FOS and IL1A mRNA amounts were overtly increased in New Zealand rabbits with high-fat diet induced atherosclerosis. Moreover, geniposide reduced iNOS (M1 phenotype) mRNA and protein amounts as well as IL-1ß secretion, which were enhanced in New Zealand rabbits with high-fat diet induced atherosclerosis. Besides, Arg-1 (M2 phenotype) mRNA and protein amounts were significantly increased after geniposide treatment, as well as IL-10 secretion. CONCLUSION: These findings suggest that geniposide could inhibit the progression of and stabilize atherosclerotic plaques in rabbits by suppressing M1 macrophage polarization and promoting M2 polarization through the FOS/MAPK signaling pathway.


Assuntos
Aterosclerose/tratamento farmacológico , Iridoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/patologia , Citocinas/metabolismo , Dieta Hiperlipídica , Progressão da Doença , Macrófagos/metabolismo , Masculino , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/metabolismo , Coelhos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA