Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(2): 643-654, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647552

RESUMO

BACKGROUND: Interface modification driven by supramolecular self-assembly has been accepted as a valuable strategy for emulsion stabilization enhancement. However, there has been a dearth of comparative research on the effect of simple complexation and assembly from the perspective of the responsible mechanism. RESULTS: The present study selected zein and tannic acid (TA) as representative protein and polyphenol modules for self-assembly (coined as TA-modified zein particle and TA-zein complex particle) to explore the surface properties and interfacial behavior, as well as the stability of constructed Pickering emulsions to obtain the regulation law of different modification methods on the interfacial behavior of colloidal particles. The results demonstrated that TA-modified zein colloidal particles potentially improved the emulsifying properties. When the TA concentration was 3 mmol L-1 , the optimized TA-modified zein particle was nano-sized (109.83 nm) and had advantageous interfacial properties, including sharply reduced surface hydrophobicity, as well as a low diffusion rate at the oil/water interface. As a result, the shelf life of Pickering emulsion containing 50% oil phase was extended to 90 days. CONCLUSION: Through multi-angled research on the properties of the interfacial membrane, improvement of emulsion stability was a result of the formation of viscoelastic interfacial film that resulted from the decrease of absorption rate between particles and interface. Using refined regulation to investigate the role of different sample preparation methods from a mechanistic perspective. Overall, the present study has provided a reference for TA to regulate the surface properties and interface behavior of zein colloidal particles, enriched the understanding of colloidal interface assembly, and provided a theoretical basis for the quality control of interface-oriented food systems. © 2023 Society of Chemical Industry.


Assuntos
Zeína , Emulsões/química , Zeína/química , Tamanho da Partícula , Polifenóis
2.
Ultrason Sonochem ; 94: 106348, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36871524

RESUMO

A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.


Assuntos
Óleos Voláteis , Origanum , Óleos Voláteis/farmacologia , Emulsões , Muramidase , Escherichia coli , Staphylococcus aureus , Tamanho da Partícula , Antibacterianos/farmacologia , Água
3.
Food Chem ; 185: 377-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25952882

RESUMO

An up-and-down-shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) method coupled with gas chromatography-mass spectrometry was developed for the determination of fungicides (cyprodinil, procymidone, fludioxonil, flusilazole, benalaxyl, and tebuconazole) in wine. The developed method requires 11 µL of 1-octanol without the need for dispersive solvents. The total extraction time was approximately 3 min. Under optimum conditions, the linear range of the method was 0.05-100 µg L(-1) for all fungicides and the limit of detection was 0.007-0.025 µg L(-1). The absolute and relative recoveries were 31-83% and 83-107% for white wine, respectively, and 32-85% and 83-108% for red wine, respectively. The intra-day and inter-day precision were 0.5-7.5% and 0.7-6.1%, respectively. Our developed method had good sensitivity and high extraction efficiency. UDSA-DLLME is a desirable method in terms of performance and speed.


Assuntos
Fungicidas Industriais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Líquida/métodos , Vinho/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA