RESUMO
Activation of the cGAS-STING pathway is traditionally considered a "trigger-release" mechanism where detection of microbial DNA or cyclic di-nucleotides sets off the type I interferon response. Whether this pathway can be activated without pathogenic ligand exposure is less well understood. Here we show that loss of Golgi-to-lysosome STING cofactors, but not ER-to-Golgi cofactors, selectively activates tonic interferon signalling. Impairment of post-Golgi trafficking extends STING Golgi-dwell time, resulting in elevated immune signalling and protection against infection. Mechanistically, trans-Golgi coiled coil protein GCC2 and several RAB GTPases act as key regulators of STING post-Golgi trafficking. Genomic deletion of these factors potently activates cGAS-STING signalling without instigating any pathogenic trigger for cGAS. Gcc2-/- mice develop STING-dependent serologic autoimmunity. Gcc2-deleted or Rab14-deleted cancer cells induce T-cell and IFN-dependent anti-tumour immunity and inhibit tumour growth in mice. In summary, we present a "basal flux" mechanism for tonic cGAS-STING signalling, regulated at the level of post-Golgi STING trafficking, which could be exploited for cancer immunotherapy.
Assuntos
Interferon Tipo I , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Complexo de Golgi/metabolismo , Nucleotídeos Cíclicos/metabolismo , Interferon Tipo I/metabolismo , Imunidade InataRESUMO
The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.
Assuntos
Proteínas de Membrana/metabolismo , Modelos Biológicos , Doença de Niemann-Pick Tipo C/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Cerebelo/patologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Destreza Motora , Doenças Neuroinflamatórias , Proteína C1 de Niemann-Pick/deficiência , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteólise , Células de Purkinje/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismoRESUMO
Herein, we have successfully semi-synthesized a TDP-43 prion-like domain with Ser404 phosphorylation. We have demonstrated that Ser404 phosphorylation could accelerate the amyloid aggregation of the TDP-43 prion-like domain and aggravate its cytotoxicity.
Assuntos
Proteínas Amiloidogênicas/farmacologia , Proteínas de Ligação a DNA/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Priônicas/farmacologia , Serina/química , Proteínas Amiloidogênicas/síntese química , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/toxicidade , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/síntese química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Camundongos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Fosforilação , Proteínas Priônicas/síntese química , Proteínas Priônicas/metabolismo , Proteínas Priônicas/toxicidade , Domínios Proteicos , Multimerização ProteicaRESUMO
TAR DNA binding protein 43 (TDP-43) is a key target in amyotrophic lateral sclerosis (ALS) treatment. Here, based on hydrophobic tagging strategy, we designed and synthesized a series of single or double hydrophobic tags conjugated peptides D1-D8. Among them, it was found that D4 displayed strongest ability to induce TDP-43 degradation in cells. D4 could reduce TDP-43 induced cytotoxicity. Besides, D4 could reduce TDP-43 levels in a transgenic drosophila model.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos/química , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Drosophila melanogaster/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologiaRESUMO
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three-dimensional structure domain was constructed from three segments murine PrP (mPrP)(90-177), mPrP(178-212), and mPrP(213-230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C-terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Assuntos
Ésteres/síntese química , Peptídeos/síntese química , Proteínas Priônicas/síntese química , Compostos de Sulfidrila/síntese química , Animais , Ésteres/química , Camundongos , Conformação Molecular , Peptídeos/química , Proteínas Priônicas/química , Compostos de Sulfidrila/químicaRESUMO
Tau, an important pathological protein of Alzheimer's disease (AD), can mediate the toxicity of amyloid ß (Aß). Thus, reduction of Tau with chemical molecules may offer a novel strategy for treating AD. Here, we designed and synthesized a series of multifunctional molecules that contained Tau-recognition moieties and E3 ligase-binding moieties to enhance Tau degradation. Among these molecules, TH006 had the highest activity of inducing Tau degradation by increasing its poly-ubiquitination. The decrement in Tau induced by TH006 could decrease the cytotoxicity caused by Aß. Furthermore, TH006 could regulate the Tau level in the brain of an AD mouse model. Therefore, partial reduction of Tau with such multifunctional peptides may open up a novel therapeutic strategy for AD treatment.
Assuntos
Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/antagonistas & inibidores , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Ubiquitina/metabolismo , Proteínas tau/metabolismoRESUMO
Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.