Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(7): 2963-2975, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521868

RESUMO

Insulin-like growth factor-1 receptor (IGF-1R) has been made an attractive anticancer target due to its overexpression in cancers. However, targeting it has often produced the disappointing results as the role played by cross talk with numerous downstream signalings. Here, we report a disobliging IGF-1R signaling which promotes growth of cancer through triggering the E3 ubiquitin ligase MEX3A-mediated degradation of RIG-I. The active ß-arrestin-2 scaffolds this disobliging signaling to talk with MEX3A. In response to ligands, IGF-1Rß activated the basal ßarr2 into its active state by phosphorylating the interdomain domain on Tyr64 and Tyr250, opening the middle loop (Leu130‒Cys141) to the RING domain of MEX3A through the conformational changes of ßarr2. The models of ßarr2/IGF-1Rß and ßarr2/MEX3A could interpret the mechanism of the activated-IGF-1R in triggering degradation of RIG-I. The assay of the mutants ßarr2Y64A and ßarr2Y250A further confirmed the role of these two Tyr residues of the interlobe in mediating the talk between IGF-1Rß and the RING domain of MEX3A. The truncated-ßarr2 and the peptide ATQAIRIF, which mimicked the RING domain of MEX3A could prevent the formation of ßarr2/IGF-1Rß and ßarr2/MEX3A complexes, thus blocking the IGF-1R-triggered RIG-I degradation. Degradation of RIG-I resulted in the suppression of the IFN-I-associated immune cells in the TME due to the blockade of the RIG-I-MAVS-IFN-I pathway. Poly(I:C) could reverse anti-PD-L1 insensitivity by recovery of RIG-I. In summary, we revealed a disobliging IGF-1R signaling by which IGF-1Rß promoted cancer growth through triggering the MEX3A-mediated degradation of RIG-I.

2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298504

RESUMO

Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, can be directly activated by oxidants through cysteine modification. However, the patterns of cysteine modification are unclear. Structural analysis showed that the free sulfhydryl groups of residue pairs C387 and C391 were potentially oxidized to form a disulfide bond, which is expected to be closely related to the redox sensing of TRPV1. To investigate if and how the redox states of C387 and C391 activate TRPV1, homology modeling and accelerated molecular dynamic simulations were performed. The simulation revealed the conformational transfer during the opening or closing of the channel. The formation of a disulfide bond between C387 and C391 leads to the motion of pre-S1, which further propagates conformational change to TRP, S6, and the pore helix from near to far. Residues D389, K426, E685-Q691, T642, and T671 contribute to the hydrogen bond transfer and play essential roles in the opening of the channel. The reduced TRPV1 was inactivated mainly by stabilizing the closed conformation. Our study elucidated the redox state of C387-C391 mediated long-range allostery of TRPV1, which provided new insights into the activation mechanism of TRPV1 and is crucial for making significant advances in the treatment of human diseases.


Assuntos
Cisteína , Simulação de Dinâmica Molecular , Humanos , Cisteína/química , Oxirredução , Domínios Proteicos , Dissulfetos , Canais de Cátion TRPV/metabolismo
3.
Chem Biol Drug Des ; 102(3): 444-456, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36509697

RESUMO

The natural products plinabulin, docetaxel, and vinblastine are microtubule targeting agents (MTAs). They have been used alone or in combination in cancer treatment. However, the exact nature of their effects on microtubule (MT) polymerization dynamics is poorly understood. To elucidate the longitudinal conformational and energetic changes during MT dynamics, a total of 140 ns molecular dynamic simulations combined with binding free energy calculations were performed on seven tubulin models. The results indicated that the drugs disrupted MT polymerization by altering both MT conformation and binding free energy of the neighboring tubulin subunits. The combination of plinabulin and docetaxel destabilized MT polymerization due to bending MT and weakening the polarity of tubulin polymerization. The new combination of docetaxel and vinblastine synergistically enhanced MT depolymerization and bending, while plinabulin and vinblastine had no synergistic inhibitory effects. The results were verified by the tubulin assembly assay. Our study obtained a comprehensive understanding of the action mechanisms of three natural drugs and their combinations on MT dynamic, provided theoretical guidance for new MTA combinations, and would promote the optimal use of MTA and contribute to developing new MTAs as anticancer agents.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Tubulina (Proteína) , Antineoplásicos/farmacologia , Docetaxel/farmacologia , Docetaxel/metabolismo , Microtúbulos , Tubulina (Proteína)/metabolismo , Vimblastina/farmacologia , Vimblastina/análise , Vimblastina/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
4.
Toxins (Basel) ; 14(11)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422985

RESUMO

Peptide toxins generally have extreme pharmacological activities and provide a rich source for the discovery of drug leads. However, determining the optimal activity of a new peptide can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot; three positive-unlabeled (PU) learning schemes, adaptive basis classifier, two-step method, and PU bagging were adopted to develop models for predicting the biological function of new peptide toxins. All three schemes were embedded with 14 machine learning classifiers. The prediction results of the adaptive base classifier and the two-step method were highly consistent. The models with top comprehensive performances were further optimized by feature selection and hyperparameter tuning, and the models were validated by making predictions for 61 three-finger toxins or the external HemoPI dataset. Biological functions that can be identified by these models include cardiotoxicity, vasoactivity, lipid binding, hemolysis, neurotoxicity, postsynaptic neurotoxicity, hypotension, and cytolysis, with relatively weak predictions for hemostasis and presynaptic neurotoxicity. These models are discovery-prediction tools for active peptide toxins and are expected to accelerate the development of peptide toxins as drugs.


Assuntos
Toxinas Biológicas , Humanos , Peptídeos/toxicidade , Hemólise , Cardiotoxicidade , Morte Celular
5.
Pharmacol Ther ; 222: 107792, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33309557

RESUMO

α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.


Assuntos
Conotoxinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Animais , Química Farmacêutica , Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
6.
Bioorg Med Chem ; 28(1): 115186, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759826

RESUMO

The co-crystal structure of Compound 6b with tubulin was prepared and solved for indicating the binding mode and for further optimization. Based on the co-crystal structures of tubulin with plinabulin and Compound 6b, a total of 27 novel A/B/C-rings plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human lung cancer NCI-H460 cell line. The optimum phenoxy-diketopiperazine-type Compound 6o exhibited high potent cytotoxicity (IC50 = 4.0 nM) through SAR study of three series of derivatives, which was more potent than plinabulin (IC50 = 26.2 nM) and similar to Compound 6b (IC50 = 3.8 nM) against human lung cancer NCI-H460 cell line. Subsequently, the Compound 6o was evaluated against other four human cancer cell lines. Both tubulin polymerization assay and immunofluorescence assay showed that Compound 6o could inhibit microtubule polymerization efficiently. Furthermore, theoretical calculation of the physical properties and molecular docking were elucidated for these plinabulin derivatives. The binding mode of Compound 6o was similar to Compound 6b based on the result of molecular docking. The theoretical calculated LogPo/w and PCaco of Compound 6o were better than Compound 6b, which could enhance its cytostatic activity. Therefore, Compound 6o might be developed as a novel potent anti-microtubule agent.


Assuntos
Antineoplásicos/farmacologia , Dicetopiperazinas/farmacologia , Desenvolvimento de Medicamentos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Dicetopiperazinas/síntese química , Dicetopiperazinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Mar Drugs ; 17(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035725

RESUMO

Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial-mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients.


Assuntos
Alginatos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Alginatos/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal , Humanos , Laminaria/química , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos
8.
Bioorg Med Chem ; 26(8): 2061-2072, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571653

RESUMO

Based on the co-crystal structures of tubulin with plinabulin and Compound 1 (a derivative of plinabulin), a total of 18 novel plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human pancreatic cancer BxPC-3 cell lines. Two novel Compounds 13d and 13e exhibited potent activities with IC50 at 1.56 and 1.72 nM, respectively. The tubulin polymerization assay indicated that these derivatives could inhibit microtubule polymerization. Furthermore, the interaction between tubulin and these compounds were elucidated by molecular docking. The binding modes of Compounds 13d and 13e were similar to the co-crystal structure of Compound 1. H-π interaction was observed between the aromatic hydrogen of thiophene moiety with Phe20, which could enhance their binding affinities.


Assuntos
Antineoplásicos/síntese química , Dicetopiperazinas/química , Desenho de Fármacos , Moduladores de Tubulina/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/patologia , Estrutura Terciária de Proteína , Solubilidade , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
9.
RSC Adv ; 8(2): 1055-1064, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35538960

RESUMO

Microtubules are a favorable target for development of anticancer agents. In this study, the anti-proliferative activities of plinabulin and six diketopiperazine derivatives were evaluated against human lung cancer cell line NCI-H460 and human pancreatic cancer cell line BxPC-3. The inhibition activities on these microtubules were assessed by tubulin polymerization and immunofluorescence assays. To gain insight into the interaction mechanism of the derivatives and tubulin, a molecular dynamics simulation was performed. We discovered that the diketopiperazine derivatives could prevent tubulin assembly through conformational changes. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations showed that the trend of the binding free energies of these inhibitors was in agreement with the trend of their biological activities. Introducing hydrophobic groups into the A-ring was favorable for binding. Energy decomposition indicated that van der Waals interaction played an essential role in the binding affinity of tubulin polymerization inhibitors. In addition, the key residues responsible for inhibitor binding were identified. In summary, this study provided valuable information for development of novel tubulin polymerization inhibitors as anticancer agents.

10.
Chem Biol Drug Des ; 90(4): 609-617, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28338292

RESUMO

A series of novel indazole-based diarylurea derivatives targeting c-kit were designed by structure-based drug design. The derivatives were prepared, and their antiproliferative activities were evaluated against human colon cancer HCT-116 cell line and hepatocellular carcinoma PLC/PRF/5 cell line. The antiproliferative activities demonstrated that six of nine compounds exhibited comparable activities with sorafenib against HCT-116. The structure-activity relationship (SAR) analysis indicated that the indazole ring part tolerated different kinds of substituents, and the N position of the central pyridine ring played key roles in antiproliferative activity. The SAR and interaction mechanisms were further explored using molecular docking method. Compound 1i with N-(2-(pyrrolidin-1-yl)ethyl)-carboxamide possessed improved solubility, 596.1 ng/ml and best activities, IC50 at 1.0 µm against HCT-116, and 3.48 µm against PLC/PRF/5. It is a promising anticancer agent for further development.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indazóis/química , Indazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho Assistido por Computador , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Sorafenibe , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 13(5): 6138-6155, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754355

RESUMO

Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA) and Comparative Similarity Indices Analysis (CoMSIA) models produced statistically significant results with the cross-validated correlation coefficients q(2) of 0.658 and 0.567, non-cross-validated correlation coefficients r(2) of 0.988 and 0.978, and predicted correction coefficients r(2) (pred) of 0.715 and 0.793, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of novel potent AR antagonists. A set of 30 new analogs were proposed by utilizing the results revealed in the present study, and were predicted with potential activities in the developed models.


Assuntos
Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Masculino , Simulação de Acoplamento Molecular , Neoplasias da Próstata/patologia , Relação Quantitativa Estrutura-Atividade
12.
Biochem Biophys Res Commun ; 389(4): 645-50, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19766098

RESUMO

Human Ero1-Lalpha catalyzes the formation of disulfide bond and hence plays an essential role in protein folding. Understanding the mechanism of disulfide bond formation in mammals is important because of the involvement of protein misfolding in conditions such as diabetes, arthritis, cancer, and aging. However, the crystal structure of the enzyme is not available yet, which seriously hinders the understanding of biological function of Ero1-Lalpha. Based on the crystal structure of yeast Ero1p, a rational three-dimensional structural model of Ero1-Lalpha was built and the characteristics of the enzyme were hence investigated. The characteristic similarities and differences between Ero1-Lalpha and Ero1p were compared on the basis of computational and experimental results, providing the first insight into the structure-function relationships of the enzymes. Both calculation and experiment got the concordant conclusion that FAD binds more tightly with Ero1-Lalpha than Ero1p. In addition, the probable electron transfer pathway was proposed on the basis of the structural models.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Oxirredutases/genética , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA