Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37783839

RESUMO

Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.

2.
Cell Biol Int ; 44(10): 2163-2169, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32557962

RESUMO

The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF-21) protected neurons from glutamate excitotoxicity and that upregulation of FGF-21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF-21 protects bone marrow-derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF-21 in MSCs. FGF-21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF-21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2 O2 ), tumor necrosis factor-α (TNF-α), and staurosporine, known inducers of apoptosis, were evaluated in FGF-21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose-dependently increased by all three stimuli in mCherry MSCs. FGF-21 overexpression robustly suppressed caspase activation induced by H2 O2 and TNF-α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF-21 overexpression. Taken together, these results provide compelling evidence that FGF-21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell-based therapies.


Assuntos
Apoptose , Fatores de Crescimento de Fibroblastos/fisiologia , Inflamação , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo , Animais , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estaurosporina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
3.
J Neurotrauma ; 37(1): 14-26, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298621

RESUMO

Traumatic brain injury (TBI) is a progressive and complex pathological condition that results in multiple adverse consequences, including impaired learning and memory. Transplantation of mesenchymal stem cells (MSCs) has produced limited benefits in experimental TBI models. Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that has neuroprotective effects, promotes remyelination, enhances angiogenesis, and elongates astrocytic processes. In this study, MSCs were genetically engineered to overexpress FGF21 in order to improve their efficacy in TBI. MSCs overexpressing FGF21 (MSC-FGF21) were transplanted to mouse brain by intracerebroventricular injection 24 h after TBI was induced by controlled cortical impact (CCI). Hippocampus-dependent spatial learning and memory, assessed by the Morris water maze test, was markedly decreased 3-4 weeks after TBI, a deficit that was robustly recovered by treatment with MSC-FGF21, but not MSC-mCherry control. Hippocampus-independent learning and memory, assessed by the novel object recognition test, was also impaired; these effects were blocked by treatment with both MSC-FGF21 and MSC-mCherry control. FGF21 protein levels in the ipsilateral hippocampus were drastically reduced 4 weeks post-TBI, a loss that was restored by treatment with MSC-FGF21, but not MSC-mCherry. MSC-FGF21 treatment also partially restored TBI-induced deficits in neurogenesis and maturation of immature hippocampal neurons, whereas MSC-mCherry was less effective. Finally, MSC-FGF21 treatment also normalized TBI-induced impairments in dendritic arborization of hippocampal neurons. Taken together, the results indicate that MSC-FGF21 treatment significantly improved TBI-induced spatial memory deficits, impaired hippocampal neurogenesis, and abnormal dendritic morphology. Future clinical investigations using MSC-FGF21 to improve post-TBI outcomes are warranted.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Neurogênese , Recuperação de Função Fisiológica , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia
4.
Mol Psychiatry ; 23(12): 2375-2390, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29298990

RESUMO

Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3ß) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3ß complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3ß, thus dissociating the TRAX/DISC1/GSK3ß complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3ß by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3ß binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3ß by A2AR activation or a GSK3ß inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3ß complex) for future therapeutic development for mental disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Proteínas de Transporte/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/fisiologia , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos , Neurônios/metabolismo , Células PC12 , Fosforilação , Ratos , Receptor A2A de Adenosina/genética , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 114(39): 10479-10484, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28894008

RESUMO

Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.


Assuntos
Anquirinas/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Prosencéfalo/fisiopatologia , Sinapses/patologia , Animais , Transtorno Bipolar/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Lítio/farmacologia , Metilfenidato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Proto-Oncogênicas c-fyn/biossíntese , Ácido Valproico/farmacologia , Canais de Sódio Disparados por Voltagem/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-27207921

RESUMO

BACKGROUND: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. METHODS: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. RESULTS: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. CONCLUSIONS: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.


Assuntos
Forma Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/biossíntese , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Regulação para Cima/efeitos dos fármacos , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Histona Desacetilases/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Cultura Primária de Células
7.
Exp Neurol ; 281: 81-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27085395

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells. Our results suggest that preconditioning stem cells with the mood stabilizers lithium and VPA before transplantation may serve as an effective strategy for enhancing the therapeutic efficacy of stem cell-based therapies.


Assuntos
Antimaníacos/administração & dosagem , Doença de Huntington/cirurgia , Cloreto de Lítio/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Esquema de Medicação , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Mol Cell Neurosci ; 68: 303-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320681

RESUMO

Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Membrana/metabolismo , Neurônios Motores/patologia , Transdução de Sinais/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase/genética
9.
FEBS Lett ; 588(24): 4791-8, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25451224

RESUMO

MicroRNAs (miRNAs) have been reported to play significant roles in the pathogenesis of various polyQ diseases. This study aims to investigate the regulation of ATXN3 gene expression by miRNA. We found that miR-25 reduced both wild-type and polyQ-expanded mutant ataxin-3 protein levels by interacting with the 3'UTR of ATXN3 mRNA. miR-25 also increased cell viability, decreased early apoptosis, and downregulated the accumulation of mutant ataxin-3 protein aggregates in SCA3/MJD cells. These novel results shed light on the potential role of miR-25 in the pathogenesis of SCA3/MJD, and provide a possible therapeutic intervention for this disorder.


Assuntos
Citotoxinas/toxicidade , Inativação Gênica , MicroRNAs/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Peptídeos/toxicidade , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Regiões 3' não Traduzidas/genética , Ataxina-3 , Sequência de Bases , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células HEK293 , Humanos , Doença de Machado-Joseph/genética , Mutação
10.
ACS Chem Neurosci ; 5(6): 422-33, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24697257

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-ß (Aß), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Compostos de Lítio/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/fisiopatologia , Humanos , Compostos de Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico
11.
Am J Transl Res ; 5(4): 450-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724168

RESUMO

Identifying mechanisms to enhance neuroprotection holds tremendous promise in developing new treatments for neuropsychiatric and neurodegenerative diseases. We sought to determine the potential role for microRNAs (miRNAs) in neuroprotection following neuronal death. A neuronal culture system of rat cerebellar granule cells was used to examine miRNA expression changes following glutamate-induced excitotoxicity and neuroprotective treatments. Combination treatment with the mood stabilizers lithium and valproic acid provided near-complete protection from glutamate excitotoxicity. Numerous miRNAs were detected by microarrays to be regulated by the combined lithium and valproic acid treatment, and the following candidates were confirmed using real-time PCR: miR-34a, miR-147b, miR-182, miR-222, miR-495, and miR-690. We then verified the apoptotic actions of miR-34a mimic in a human neuroblastoma cell line (SH-SY5Y) under basal conditions and following endoplasmic reticulum stress. To gain insight into the function of these mood stabilizer-regulated miRNAs, we performed two separate analyses: a candidate approach using Ingenuity Pathway Analysis that was restricted to only our PCR-verified miRNAs, and a global approach using DIANA-mirPath that included all significantly regulated miRNAs. It was observed that the pathways associated with mood stabilizer-regulated miRNAs in our study (global approach) are strongly associated with pathways implicated in neuropsychiatric diseases such as schizophrenia. We also observed an overlap in the mood stabilizer-regulated miRNAs identified from our study along with dysregulated miRNAs in both neuropsychiatric and neurodegenerative disorders. We anticipate that these associations and overlaps implicate critical pathways and miRNAs in disease mechanisms for novel therapeutic treatments that may hold potential for many neurological diseases.

12.
J Neurosci Res ; 91(5): 694-705, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404572

RESUMO

Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Traumatismos da Medula Espinal/patologia , Ácido Valproico/farmacologia , Animais , Catalase/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Membro Posterior/fisiopatologia , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Fibras Nervosas/metabolismo , Proteínas de Neurofilamentos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Superóxido Dismutase/metabolismo , Ácido Valproico/uso terapêutico
13.
Int J Neuropsychopharmacol ; 16(3): 607-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22564541

RESUMO

Lamotrigine (LTG), a phenyltriazine derivative and anti-epileptic drug, has emerged as an effective first-line treatment for bipolar mood disorder. Like the other mood stabilizers lithium and valproate, LTG also has neuroprotective properties but its exact mechanisms remain poorly defined. The present study utilized rat cerebellar granule cells (CGCs) to examine the neuroprotective effects of LTG against glutamate-induced excitotoxicity and to investigate potential underlying mechanisms. CGCs pretreated with LTG were challenged with an excitotoxic dose of glutamate. Pretreatment caused a time- and concentration-dependent inhibition of glutamate excitotoxicity with nearly full protection at higher doses (≥ 100 µm), as revealed by cell viability assays and morphology. LTG treatment increased levels of acetylated histone H3 and H4 as well as dose- and time-dependently enhanced B-cell lymphoma-2 (Bcl-2) mRNA and protein levels; these changes were associated with up-regulation of the histone acetylation and activity of the Bcl-2 promoter. Importantly, lentiviral-mediated Bcl-2 silencing by shRNA reduced both LTG-induced Bcl-2 mRNA up-regulation and neuroprotection against glutamate excitotoxicity. Finally, the co-presence of a sub-effective concentration of LTG (10 µm) with lithium or valproate produced synergistic neuroprotection. Together, our results demonstrate that the neuroprotective effects of LTG against glutamate excitotoxicity likely involve histone deacetylase inhibition and downstream up-regulation of anti-apoptotic protein Bcl-2. These underlying mechanisms may contribute to the clinical efficacy of LTG in treating bipolar disorder and warrant further investigation.


Assuntos
Antimaníacos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Triazinas/farmacologia , Afeto/efeitos dos fármacos , Afeto/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Montagem e Desmontagem da Cromatina/fisiologia , Lamotrigina , Ratos , Ratos Sprague-Dawley
14.
Am J Transl Res ; 4(3): 316-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937209

RESUMO

Stroke is a devastating brain injury that is a leading cause of adult disability with limited treatment options. Using a rat model of middle cerebral artery occlusion (MCAO) to induce cerebral ischemia, we profiled microRNAs (miRNAs), small non-protein coding RNAs, in the ischemic cortex. Many miRNAs were confirmed by qPCR to be robustly upregulated 24 hours following MCAO surgery including miR-155, miR-297a, miR-466f, miR-466h, and miR-1224. In addition, we treated MCAO rats with valproic acid (VPA), a mood stabilizer and histone deacetylase inhibitor. This post-insult treatment was shown to improve neurological deficits and motor performance following MCAO. To provide mechanistic insight into the potential targets and pathways that may underlie these benefits, we profiled miRNAs regulated following this VPA treatment. Two promising post-insult VPA-regulated candidates were miR-331 and miR-885-3p. miR-331 was also regulated by VPA pre-treatment in rat cortical neuronal cultures subjected to oxygen-glucose deprivation, an in vitro ischemic model. The predicted targets of these miRNAs analyzed by Ingenuity Pathway Analysis (IPA) identified networks involved in hematological system development, cell death, and nervous system development. These predicted networks were further filtered using IPA and showed significant associations with neurological diseases including movement disorders, neurodegenerative disorders, damage to cerebral cortex, and seizure disorders among others. Collectively, these data support common disease mechanisms that may be under miRNA control and provide exciting directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new therapies for neurological disorders.

15.
Stroke ; 43(9): 2430-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22811460

RESUMO

BACKGROUND AND PURPOSE: Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functional recovery after ischemic stroke. METHODS: Male rats underwent middle cerebral artery occlusion for 60 minutes followed by reperfusion for up to 14 days. Assessed parameters were: locomotor function through the Rotarod test; infarct volume through T2-weighted MRI; microvessel density through immunohistochemistry; relative cerebral blood flow through perfusion-weighted imaging; protein levels of proangiogenic factors through Western blotting; and matrix metalloproteinase-2/9 activities through gelatin zymography. RESULTS: Postischemic VPA treatment robustly improved the Rotarod performance of middle cerebral artery occlusion rats on Days 7 and 14 after ischemia and significantly reduced brain infarction on Day 14. Concurrently, VPA markedly enhanced microvessel density, facilitated endothelial cell proliferation, and increased relative cerebral blood flow in the ipsilateral cortex. The transcription factor hypoxia-inducible factor-1α and its downstream proangiogenic factors, vascular endothelial growth factor and matrix metalloproteinase-2/9, were upregulated after middle cerebral artery occlusion and significantly potentiated by VPA in the ipsilateral cortex. Acetylation of histone-H3 and H4 was robustly increased by chronic VPA treatment. The beneficial effects of VPA on Rotarod performance and microvessel density were abolished by hypoxia-inducible factor-1α inhibition. CONCLUSIONS: Chronic VPA treatment enhances angiogenesis and promotes functional recovery after brain ischemia. These effects may involve histone deacetylase inhibition and upregulation of hypoxia-inducible factor-1α and its downstream proangiogenic factors vascular endothelial growth factor and matrix metalloproteinase-2/9.


Assuntos
Anticonvulsivantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/antagonistas & inibidores , Western Blotting , Isquemia Encefálica/patologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Locomoção , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Ácido Valproico/antagonistas & inibidores
16.
Stroke ; 42(10): 2932-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21836090

RESUMO

BACKGROUND AND PURPOSE: The migratory efficiency of mesenchymal stem cells (MSC) toward cerebral infarct after transplantation is limited. Valproate (VPA) and lithium enhance in vitro migration of MSC by upregulating CXC chemokine receptor 4 and matrix metalloproteinase-9, respectively. Ability of VPA and lithium to promote MSC homing and to improve functional recovery was assessed in a rat model of cerebral ischemia. METHODS: MSC primed with VPA (2.5 mmol/L, 3 hours) and/or lithium chloride (2.5 mmol/L, 24 hours) were transplanted into rats 24 hours after transient middle cerebral artery occlusion (MCAO). Neurological function was assessed via rotarod test, Neurological Severity Score, and body asymmetry test for 2 weeks. Infarct volume was analyzed by MRI. The number of homing MSC and microvessel density in the infarcted regions were measured 15 days after MCAO using immunohistochemistry. RESULTS: Priming with VPA or lithium increased the number of MSC homing to the cerebral infarcted regions, and copriming with VPA and lithium further enhanced this effect. MCAO rats receiving VPA-primed and/or lithium-primed MSC showed improved functional recovery, reduced infarct volume, and enhanced angiogenesis in the infarcted penumbra regions. These beneficial effects of VPA or lithium priming were reversed by AMD3100, a CXC chemokine receptor 4 antagonist, and GM6001, a matrix metalloproteinase inhibitor, respectively. CONCLUSIONS: Priming with VPA and/or lithium promoted the homing and migration ability of MSC, improved functional recovery, reduced brain infarct volume, and enhanced angiogenesis in a rat MCAO model. These effects were likely mediated by VPA-induced CXC chemokine receptor 4 overexpression and lithium-induced matrix metalloproteinase-9 upregulation.


Assuntos
Movimento Celular/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , Lítio/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/metabolismo , Ácido Valproico/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia
17.
Brain Res ; 1403: 19-27, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21718971

RESUMO

The endoplasmic reticulum (ER) is a critical site for intracellular calcium storage as well as protein synthesis, folding, and trafficking. Disruption of these processes is gaining support for contributing to heritable vulnerability of certain diseases. Here, we investigated Bax inhibitor 1 (BI-1), an anti-apoptotic protein that primarily resides in the ER and associates with B-cell lymphoma 2 (Bcl-2) and Bcl-XL, as an affective resiliency factor through its modulation of calcium homeostasis. We found that transgenic (TG) mice with BI-1 reinforced expression, via the neuronal specific enolase promoter, showed protection against the learned helplessness (LH) paradigm, an animal model to test stress coping. TG mice were also protected against anhedonia following both serotonin and catecholamine depletion as measured in two different models, the female urine sniffing test and the saccharine preference test. In addition, we used primary mouse cortical cultures to explore the ability of BI-1 to influence calcium homeostasis under basal conditions and also following challenge with thapsigargin (THPS), an inhibitor of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) that disrupts calcium homeostasis. TG neurons showed decreased basal cytosolic calcium levels and decreased Ca(2+) cytosolic accumulation following challenge with THPS as compared to WT neuronal cultures. Together, these data suggest that BI-1, through its actions on calcium homeostasis, may confer affective resiliency in multiple animal models of depression and anhedonia.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/metabolismo , Resiliência Psicológica , Animais , Feminino , Desamparo Aprendido , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
18.
Neuropsychopharmacology ; 35(11): 2225-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20613717

RESUMO

Mesenchymal stem cells (MSCs) show high potential for the therapy of several human diseases; however, the effectiveness of MSC transplantation has been hampered by the relatively poor migratory capacity of these cells toward disease target sites. This study investigated whether treatment of MSCs with two mood stabilizers-valproic acid (VPA) and lithium-would enhance cell migration and, if so, to explore the mechanisms underlying their effects. Short-term (3 h) exposure of MSCs to a relatively high concentration (2.5 mM) of VPA markedly increased the transcript and protein levels of CXC chemokine receptor 4 (CXCR4). VPA-induced CXCR4 expression required inhibition of histone deacetylases (HDACs), including the HDAC1 isoform, and involved histone hyperacetylation at the promoter region of the CXCR4 gene. Notably, VPA treatment enhanced stromal cell-derived factor-1α (SDF-1α)-mediated MSC migration, which was completely blocked by AMD3100, a CXCR4 antagonist. Treatment of MSCs with lithium (2.5 mM for 1 day) selectively elevated the transcript and protein levels of matrix metalloproteinase-9 (MMP-9) and its enzymatic activity; these effects were mimicked by inhibition or gene silencing of glycogen synthase kinase-3ß (GSK-3ß). Lithium treatment also potentiated SDF-1α-dependent MSC migration across the extracellular matrix, which was suppressed by two MMP-9 inhibitors, doxycycline and GM6001. Combining VPA and lithium treatment further increased MSC migration. Overall, VPA and lithium stimulated MSC migration through distinct targets and mediators: HDAC-CXCR4 and GSK-3ß-MMP-9, respectively.


Assuntos
Afeto , Movimento Celular/efeitos dos fármacos , Lítio/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Ácido Valproico/administração & dosagem , Afeto/efeitos dos fármacos , Afeto/fisiologia , Animais , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimioterapia Combinada , Técnicas de Silenciamento de Genes , Metaloproteinase 9 da Matriz/biossíntese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Ratos , Receptores CXCR4/biossíntese
19.
Stroke ; 40(2): 652-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18974377

RESUMO

BACKGROUND AND PURPOSE: We recently reported that delayed lithium therapy can improve stroke recovery in rats by augmenting neurovascular remodeling. We tested the hypothesis that lithium can promote the expression of growth factors in brain endothelial cells and astrocytes. METHODS: Human brain microvascular endothelial cells and primary rat cortical astrocytes were exposed to lithium chloride in serum-free medium. We examined 2 representative growth factors: brain-derived neurotrophic factor and vascular endothelial growth factor (VEGF). Cell lysates were collected for Western blot analysis. Conditioned media was analyzed with enzyme-linked immunosorbent assay. SB-216763 and LY294002 were used to assess the roles of the glycogen synthase kinase-3beta (GSK-3beta) and PI3-K signaling in the lithium-induced responses. RESULTS: No consistent responses were observed for brain-derived neurotrophic factor. However, lithium (0.2 to 20 mmol/L) increased the phosphorylation of GSK-3beta and promoted VEGF secretion in a concentration-dependent manner in both endothelial and astrocyte cells. For endothelial cells, the potent GSK-3beta inhibitor SB-216763 upregulated VEGF, whereas inhibition of PI3-K with LY294002 suppressed lithium-induced responses in both phospho-GSK-3beta and VEGF. In contrast, neither inhibition of GSK-3beta nor inhibition of PI3-K had any detectable effects on VEGF levels in astrocytes. CONCLUSIONS: Lithium promotes VEGF expression through PI3-K/GSK-3beta-dependent and -independent pathways in brain endothelium and astrocytes, respectively. This growth factor signaling mechanism may contribute to lithium's reported ability to promote neurovascular remodeling after stroke.


Assuntos
Astrócitos/metabolismo , Química Encefálica/efeitos dos fármacos , Células Endoteliais/metabolismo , Cloreto de Lítio/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Astrócitos/efeitos dos fármacos , Western Blotting , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/biossíntese , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Morfolinas/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Int J Neuropsychopharmacol ; 11(8): 1123-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18611290

RESUMO

Parkinson's disease (PD) is characterized by the selective and progressive loss of dopaminergic (DA) neurons in the midbrain substantia nigra. Currently, available treatment is unable to alter PD progression. Previously, we demonstrated that valproic acid (VPA), a mood stabilizer, anticonvulsant and histone deacetylase (HDAC) inhibitor, increases the expression of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in astrocytes to protect DA neurons in midbrain neuron-glia cultures. The present study investigated whether these effects are due to HDAC inhibition and histone acetylation. Here, we show that two additional HDAC inhibitors, sodium butyrate (SB) and trichostatin A (TSA), mimic the survival-promoting and protective effects of VPA on DA neurons in neuron-glia cultures. Similar to VPA, both SB and TSA increased GDNF and BDNF transcripts in astrocytes in a time-dependent manner. Furthermore, marked increases in GDNF promoter activity and promoter-associated histone H3 acetylation were noted in astrocytes treated with all three compounds, where the time-course for acetylation was similar to that for gene transcription. Taken together, our results indicate that HDAC inhibitors up-regulate GDNF and BDNF expression in astrocytes and protect DA neurons, at least in part, through HDAC inhibition. This study indicates that astrocytes may be a critical neuroprotective mechanism of HDAC inhibitors, revealing a novel target for the treatment of psychiatric and neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Dopamina/fisiologia , Inibidores Enzimáticos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Inibidores de Histona Desacetilases , Neurônios/fisiologia , Fármacos Neuroprotetores , Animais , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Feminino , GABAérgicos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioma/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Gravidez , RNA/biossíntese , RNA/genética , Ratos , Ratos Endogâmicos F344 , Transcrição Gênica/efeitos dos fármacos , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA