Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 159: 59-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729684

RESUMO

The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.


Assuntos
Alvéolos Pulmonares , Animais , Humanos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Troca Gasosa Pulmonar/fisiologia , Regeneração , Pulmão/citologia , Pulmão/metabolismo , Lesão Pulmonar/patologia
2.
Nat Commun ; 13(1): 7252, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433959

RESUMO

Formation of branched organs requires sequential differentiation of stem cells. In this work, we find that the conducting airways derived from SOX2+ progenitors in the murine lungs fail to form without mTOR complex 1 (mTORC1) signaling and are replaced by lung cysts. Proximal-distal patterning through transitioning of distal SOX9+ progenitors to proximal SOX2+ cells is disrupted. Mitochondria number and ATP production are reduced. Compromised mitochondrial capacity results in a similar defect as that in mTORC1-deficient lungs. This suggests that mTORC1 promotes differentiation of SOX9+ progenitors to form the conducting airways by modulating mitochondrial capacity. Surprisingly, in all mutants, saccules are produced from lung cysts at the proper developmental time despite defective branching. SOX9+ progenitors also differentiate into alveolar epithelial type I and type II cells within saccules. These findings highlight selective utilization of energy and regulatory programs during stem cell differentiation to produce distinct structures of the mammalian lungs.


Assuntos
Cistos , Pulmão , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Camundongos , Diferenciação Celular , Cistos/genética , Cistos/metabolismo , Pulmão/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
Dev Cell ; 57(13): 1566-1581.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35714603

RESUMO

Alveolar formation increases the surface area for gas exchange. A molecular understanding of alveologenesis remains incomplete. Here, we show that the autonomic nerve and alveolar myofibroblast form a functional unit in mice. Myofibroblasts secrete neurotrophins to promote neurite extension/survival, whereas neurotransmitters released from autonomic terminals are necessary for myofibroblast proliferation and migration, a key step in alveologenesis. This establishes a functional link between autonomic innervation and alveolar formation. We also discover that planar cell polarity (PCP) signaling employs a Wnt-Fz/Ror-Vangl cascade to regulate the cytoskeleton and neurotransmitter trafficking/release from the terminals of autonomic nerves. This represents a new aspect of PCP signaling in conferring cellular properties. Together, these studies offer molecular insight into how autonomic activity controls alveolar formation. Our work also illustrates the fundamental principle of how two tissues (e.g., nerves and lungs) interact to build alveoli at the organismal level.


Assuntos
Miofibroblastos , Alvéolos Pulmonares , Animais , Vias Autônomas , Pulmão , Mamíferos , Camundongos , Organogênese
4.
Stem Cells ; 36(3): 377-391, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29148109

RESUMO

Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.


Assuntos
Diferenciação Celular/fisiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pulmão/citologia , Pulmão/metabolismo , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Receptores Notch/metabolismo , Proliferação de Células/fisiologia , Humanos , Transdução de Sinais/fisiologia
5.
Elife ; 62017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323616

RESUMO

Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Células Epiteliais/fisiologia , Pulmão/embriologia , Morfogênese , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Técnicas de Inativação de Genes , Camundongos , Fosfoproteínas/genética , Proteínas de Sinalização YAP
6.
J Biol Chem ; 292(9): 3888-3899, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119454

RESUMO

Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRPCreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53, Rb, and Pten, in mature parafollicular C cells via an inducible Cre recombinase from CGRPCreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53/Rb-induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRPCreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities.


Assuntos
Carcinoma Neuroendócrino/genética , Genes Supressores de Tumor , Neoplasias da Glândula Tireoide/genética , Alelos , Animais , Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Carcinoma Neuroendócrino/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Células Neuroendócrinas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
7.
J Formos Med Assoc ; 114(7): 569-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701396

RESUMO

Studies of the major signaling pathways have revealed a connection between development, regeneration, and cancer, highlighting common signaling networks in these processes. The Hedgehog (Hh) pathway plays a central role in the development of most tissues and organs in mammals. Hh signaling is also required for tissue homeostasis and regeneration in adults, while perturbed Hh signaling is associated with human cancers. A fundamental understanding of Hh signaling will not only enhance our knowledge of how the embryos are patterned but also provide tools to treat diseases related to aberrant Hh signaling. Studies have yielded a basic framework of Hh signaling, which establishes the foundation for addressing unresolved issues of Hh signaling. A detailed characterization of the biochemical interactions between Hh components will help explain the production of graded Hh responses required for tissue patterning. Additional cell biological and genetic studies will offer new insight into the role of Hh signaling in homeostasis and regeneration. Finally, drugs that are capable of manipulating the Hh pathway can be used to treat human diseases caused by disrupted Hh signaling. These investigations will serve as a paradigm for studying signal transduction/integration in homeostasis and disease, and for translating discovery from bench to bedside.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Camundongos , Neoplasias/metabolismo , Regeneração
8.
Genes Dev ; 28(22): 2547-63, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25403183

RESUMO

Control of Gli function by Suppressor of Fused (Sufu), a major negative regulator, is a key step in mammalian Hedgehog (Hh) signaling, but how this is achieved in the nucleus is unknown. We found that Hh signaling results in reduced Sufu protein levels and Sufu dissociation from Gli proteins in the nucleus, highlighting critical functions of Sufu in the nucleus. Through a proteomic approach, we identified several Sufu-interacting proteins, including p66ß (a member of the NuRD [nucleosome remodeling and histone deacetylase] repressor complex) and Mycbp (a Myc-binding protein). p66ß negatively and Mycbp positively regulate Hh signaling in cell-based assays and zebrafish. They function downstream from the membrane receptors, Patched and Smoothened, and the primary cilium. Sufu, p66ß, Mycbp, and Gli are also detected on the promoters of Hh targets in a dynamic manner. Our results support a new model of Hh signaling in the nucleus. Sufu recruits p66ß to block Gli-mediated Hh target gene expression. Meanwhile, Mycbp forms a complex with Gli and Sufu without Hh stimulation but remains inactive. Hh pathway activation leads to dissociation of Sufu/p66ß from Gli, enabling Mycbp to promote Gli protein activity and Hh target gene expression. These studies provide novel insight into how Sufu controls Hh signaling in the nucleus.


Assuntos
Regulação da Expressão Gênica , Proteínas Hedgehog/fisiologia , Proteínas Repressoras/metabolismo , alfa-Amilases Salivares/metabolismo , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Ligação Proteica , Proteômica , Proteínas Repressoras/genética , alfa-Amilases Salivares/genética , Peixe-Zebra/genética , Proteína GLI1 em Dedos de Zinco
9.
Dev Biol ; 392(2): 324-33, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24886827

RESUMO

Mammalian Hedgehog (Hh) signaling relies on three Gli transcription factors to mediate Hh responses. This process is controlled in part by a major negative regulator, Sufu, through its effects on Gli protein level, distribution and activity. In this report, we showed that Sufu regulates Gli1 protein levels by antagonizing Numb/Itch. Otherwise, Numb/Itch would induce Gli1 protein degradation. This is in contrast to inhibition of Spop-mediated degradation of Gli2/3 by Sufu. Thus, controlling protein levels of all three Gli genes by Sufu is a conserved mechanism to modulate Hh responses albeit via distinct pathways. These findings in cell-based assays were further validated in vivo. In analyzing how Sufu controls Gli proteins in different tissues, we discovered that loss of Sufu in the lung exerts different effects on Hh target genes. Hh targets Ptch1/Hhip are upregulated in Sufu-deficient lungs, consistent with Hh pathway activation. Surprisingly, protein levels of Hh target Gli1 are reduced. We also found that myofibroblasts are absent from many prospective alveoli of Sufu-deficient lungs. Myofibroblast development is dependent on PDGF signaling. Interestingly, analysis of the Pdgfra promoter revealed a canonical Gli-binding site where Gli1 resides. These studies support a model in which loss of Sufu contributes to compromised Pdgfra activation and disrupts myofibroblast development in the lung. Our work illustrates the unappreciated complexity of Hh responses where distinct Hh targets could respond differently depending on the availability of Gli proteins that control their expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/metabolismo , Miofibroblastos/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Proteínas Hedgehog/metabolismo , Técnicas Histológicas , Humanos , Imunoprecipitação , Hibridização In Situ , Luciferases , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Modelos Biológicos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteína GLI1 em Dedos de Zinco
10.
Dev Cell ; 29(2): 241-9, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24726283

RESUMO

The patterning and growth of the embryonic vertebrate limb is dependent on Sonic hedgehog (Shh), a morphogen that regulates the activity of Gli transcription factors. However, Shh expression is not observed during the first 12 hr of limb development. During this phase, the limb bud is prepatterned into anterior and posterior regions through the antagonistic actions of transcription factors Gli3 and Hand2. We demonstrate that precocious activation of Shh signaling during this early phase interferes with the Gli3-dependent specification of anterior progenitors, disturbing establishment of signaling centers and normal outgrowth of the limb. Our findings illustrate that limb development requires a sweet spot in the level and timing of pathway activation that allows for the Shh-dependent expansion of posterior progenitors without interfering with early prepatterning functions of Gli3/Gli3R or specification of anterior progenitors.


Assuntos
Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais não Endogâmicos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/fisiologia , Bovinos , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Cinesinas/genética , Cinesinas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Gli3 com Dedos de Zinco
11.
Proc Natl Acad Sci U S A ; 109(43): 17531-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23047698

RESUMO

Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanisms underlying them have been elucidated. Importantly, PNECs have long been speculated to constitute the cells of origin of human small-cell lung cancer (SCLC) and recent mouse models support this hypothesis. However, a genetic system that permits tracing the early events of PNEC transformation has not been available. To address these key issues, we developed a genetic tool in mice by introducing a fusion protein of Cre recombinase and estrogen receptor (CreER) into the calcitonin gene-related peptide (CGRP) locus that encodes a major peptide in PNECs. The CGRP(CreER) mouse line has enabled us to manipulate gene activity in PNECs. Lineage tracing using this tool revealed the plasticity of PNECs. PNECs can be colabeled with alveolar cells during lung development, and following lung injury, PNECs can contribute to Clara cells and ciliated cells. Contrary to the current model, we observed that elimination of PNECs has no apparent consequence on Clara cell recovery. We also created mouse models of SCLC in which CGRP(CreER) was used to ablate multiple tumor suppressors in PNECs that were simultaneously labeled for following their fate. Our findings suggest that SCLC can originate from differentiated PNECs. Together, these studies provide unique insight into PNEC lineage and function and establish the foundation of investigating how PNECs contribute to lung homeostasis, injury/repair, and tumorigenesis.


Assuntos
Neoplasias Pulmonares/patologia , Pulmão/citologia , Células Neuroendócrinas/fisiologia , Animais , Transformação Celular Neoplásica , Genes do Retinoblastoma , Genes p53 , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética
12.
Sci Signal ; 5(238): pe35, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22912492

RESUMO

The Hedgehog (Hh) family of secreted proteins governs the development of numerous tissues by regulating the activity of the Gli family of transcription factors. Emerging evidence shows that Hh also functions as a chemoattractant in several processes through a noncanonical pathway independent of Gli-mediated transcription. How Hh-responsive cells execute transcriptional versus chemotactic responses is a key issue. Data now suggest that altered subcellular localization of the transducer Smoothened, which functions in both the canonical and noncanonical pathways, is responsible for eliciting distinct Hh outputs.


Assuntos
Quimiotaxia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Animais , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Mutação , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Receptor Smoothened , Proteína GLI1 em Dedos de Zinco
13.
PLoS One ; 7(12): e53817, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285300

RESUMO

Identifying cells of tumor origin is a fundamental question in tumor biology. Answers to this central question will not only advance our understanding of tumor initiation and progression but also have important therapeutic implications. In this study, we aimed to uncover the cells of origin of lung adenocarcinoma, a major subtype of non-small cell lung cancer. To this end, we developed new mouse models of lung adenocarcinoma that enabled selective manipulation of gene activity in surfactant associated protein C (SPC)-expressing cells, including alveolar type II cells and bronchioalveolar stem cells (BASCs) that reside at the bronchioalveolar duct junction (BADJ). Our findings showed that activation of oncogenic Kras alone or in combination with the removal of the tumor suppressor p53 in SPC⁺ cells resulted in development of alveolar tumors. Similarly, sustained EGF signaling in SPC⁺ cells led to alveolar tumors. By contrast, BASCs failed to proliferate or produce tumors under these conditions. Importantly, in a mouse strain in which Kras/p53 activity was selectively altered in type II cells but not BASCs, alveolar tumors developed while BADJs retained normal architecture. These results confirm and extend previous findings and support a model in which lung adenocarcinoma can initiate in alveolar type II cells. Our results establish the foundation for elucidating the molecular mechanisms by which lung cancer initiates and progresses in a specific lung cell type.


Assuntos
Adenocarcinoma/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Alvéolos Pulmonares/patologia , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Genes p53/fisiologia , Genes ras/fisiologia , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Transgênicos , Mutação/fisiologia
14.
Genes Dev ; 23(16): 1910-28, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684112

RESUMO

A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. We focus on Suppressor of fused (Sufu), a major Hh regulator in mammals, and reveal that Sufu controls protein levels of full-length Gli transcription factors, thus affecting the production of Gli activators and repressors essential for graded Hh responses. Surprisingly, despite ciliary localization of most Hh pathway components, regulation of Gli protein levels by Sufu is cilium-independent. We propose that Sufu-dependent processes in Hh signaling are evolutionarily conserved. Consistent with this, Sufu regulates Gli protein levels by antagonizing the activity of Spop, a conserved Gli-degrading factor. Furthermore, addition of zebrafish or fly Sufu restores Gli protein function in Sufu-deficient mammalian cells. In contrast, fly Smo is unable to translocate to the primary cilium and activate the mammalian Hh pathway. We also uncover a novel positive role of Sufu in regulating Hh signaling, resulting from its control of both Gli activator and repressor function. Taken together, these studies delineate important aspects of cilium-dependent and cilium-independent Hh signal transduction and provide significant mechanistic insight into Hh signaling in diverse species.


Assuntos
Cílios/metabolismo , Evolução Molecular , Proteínas Hedgehog/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Proteína Axina , Linhagem Celular Transformada , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Receptores Patched , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/genética , Receptor Smoothened , Complexos Ubiquitina-Proteína Ligase , Regulação para Cima , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
15.
PLoS One ; 4(4): e5182, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19365551

RESUMO

Activation of Hedgehog (Hh) signaling requires the transmembrane protein Smoothened (Smo), a member of the G-protein coupled receptor superfamily. In mammals, Smo translocates to the primary cilium upon binding of Hh ligands to their receptor, Patched (Ptch1), but it is unclear if ciliary trafficking of Smo is sufficient for pathway activation. Here, we demonstrate that cyclopamine and jervine, two structurally related inhibitors of Smo, force ciliary translocation of Smo. Treatment with SANT-1, an unrelated Smo antagonist, abrogates cyclopamine- and jervine-mediated Smo translocation. Further, activation of protein kinase A, either directly or through activation of Galphas, causes Smo to translocate to a proximal region of the primary cilium. We propose that Smo adopts multiple inactive and active conformations, which influence its localization and trafficking on the primary cilium.


Assuntos
Cílios/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Cultivadas , Cílios/ultraestrutura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Receptores Patched , Receptor Patched-1 , Piperazinas/metabolismo , Transporte Proteico/fisiologia , Pirazóis/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , Receptor Smoothened , Alcaloides de Veratrum/metabolismo
16.
Dev Cell ; 14(5): 674-88, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18477451

RESUMO

Hedgehog (Hh) signaling is required for osteoblast differentiation from mesenchymal progenitors during endochondral bone formation. However, the role of Hh signaling in differentiated osteoblasts during adult bone homeostasis remains to be elucidated. We found that in the postnatal bone, Hh signaling activity was progressively reduced as osteoblasts mature. Upregulating Hh signaling selectively in mature osteoblasts led to increased bone formation and excessive bone resorption. As a consequence, these mutant mice showed severe osteopenia. Conversely, inhibition of Hh signaling in mature osteoblasts resulted in increased bone mass and protection from bone loss in older mice. Cellular and molecular studies showed that Hh signaling indirectly induced osteoclast differentiation by upregulating osteoblast expression of PTHrP, which promoted RANKL expression via PKA and its target transcription factor CREB. Our results demonstrate that Hh signaling in mature osteoblasts regulates both bone formation and resorption and that inhibition of Hh signaling reduces bone loss in aged mice.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas Hedgehog/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo/genética , Ligante RANK/genética , Transdução de Sinais , Animais , Doenças Ósseas Metabólicas/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Camundongos , Tamanho do Órgão , Osteoblastos/enzimologia , Osteoblastos/patologia , Osteoclastos/patologia , Regulação para Cima/genética
17.
Development ; 135(11): 1947-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18434416

RESUMO

Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.


Assuntos
Condrócitos/metabolismo , Proteínas Hedgehog/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Crescimento Celular , Células Cultivadas , Condrócitos/patologia , Membro Anterior/citologia , Membro Anterior/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Mutação , Técnicas de Cultura de Órgãos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/fisiologia
18.
Nat Cell Biol ; 10(1): 70-6, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18084282

RESUMO

Primary cilia are microtubule-based organelles involved in signal transduction and project from the surface of most vertebrate cells. Proteins that can localize to the cilium, for example, Inversin and Bardet-Biedl syndrome (BBS) proteins, are implicated in both beta-catenin-dependent and -independent Wnt signalling. Given that Inversin and BBS proteins are found both at the cilium and elsewhere in the cell, the role of the cilium itself in Wnt signalling is not clear. Using three separate mutations that disrupt ciliogenesis (affecting Kif3a, Ift88 and Ofd1), we show in this study that the primary cilium restricts the activity of the canonical Wnt pathway in mouse embryos, primary fibroblasts, and embryonic stem cells. Interestingly, unciliated cells activate transcription only in response to Wnt stimulation, but do so much more robustly than ciliated cells. Loss of Kif3a, but not other ciliogenic genes, causes constitutive phosphorylation of Dishevelled (Dvl). Blocking the activity of casein kinase I (CKI) reverses this constitutive Dvl phosphorylation and abrogates pathway hyper-responsiveness. These results suggest that Kif3a restrains canonical Wnt signalling both by restricting the CKI-dependent phosphorylation of Dvl and through a separate ciliary mechanism. More generally, these findings reveal that, in contrast to its role in promoting Hedgehog (Hh) signalling, the cilium restrains canonical Wnt signalling.


Assuntos
Cílios/metabolismo , Cinesinas/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Caseína Quinase I/metabolismo , Células Cultivadas , Proteínas Desgrenhadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Imunofluorescência , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Modelos Biológicos , Fosfoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia
19.
Development ; 133(3): 569-78, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16396903

RESUMO

Truncating mutations in Gli3, an intracellular effector in the SHH-SMO-GLI signaling pathway, cause renal aplasia/dysplasia in humans and mice. Yet, the pathogenic mechanisms are undefined. Here, we report the effect of decreased SHH-SMO signaling on renal morphogenesis, the expression of SHH target genes and GLI binding to Shh target genes. Shh deficiency or cyclopamine-mediated SMO inhibition disrupted renal organogenesis, decreased expression of GLI1 and GLI2 proteins, but increased expression of GLI3 repressor relative to GLI3 activator. Shh deficiency decreased expression of kidney patterning genes (Pax2 and Sall1) and cell cycle regulators (cyclin D1 and MYCN). Elimination of Gli3 in Shh(-/-) mice rescued kidney malformation and restored expression of Pax2, Sall1, cyclin D1, MYCN, Gli1 and Gli2. To define mechanisms by which SHH-SMO signaling controls gene expression, we determined the binding of GLI proteins to 5' flanking regions containing GLI consensus binding sequences in Shh target genes using chromatin immunoprecipitation. In normal embryonic kidney tissue, GLI1 and/or GLI2 were bound to each target gene. By contrast, treatment of embryonic kidney explants with cyclopamine decreased GLI1 and/or GLI2 binding, and induced binding of GLI3. However, cyclopamine failed to decrease Gli1 and Gli2 expression and branching morphogenesis in Gli3-deficient embryonic kidney tissue. Together, these results demonstrate that SHH-SMO signaling controls renal morphogenesis via transcriptional control of Gli, renal patterning and cell cycle regulator genes in a manner that is opposed by GLI3.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transcrição Gênica , Animais , Proteínas Hedgehog , Humanos , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Morfogênese , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
20.
J Biol Chem ; 280(19): 18990-5, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15753093

RESUMO

N-Myristoyltransferase (NMT) transfers myristate to an amino-terminal glycine of many eukaryotic proteins. In yeast, worms, and flies, this enzyme is essential for viability of the organism. Humans and mice possess two distinct but structurally similar enzymes, NMT1 and NMT2. These two enzymes have similar peptide specificities, but no one has examined the functional importance of the enzymes in vivo. To address this issue, we performed both genetic and biochemical studies. Northern blots with RNA from adult mice and in situ hybridization studies of day 13.5 embryos revealed widespread expression of both Nmt1 and Nmt2. To determine whether the two enzymes are functionally redundant, we generated Nmt1-deficient mice carrying a beta-galactosidase marker gene. beta-Galactosidase staining of tissues from heterozygous Nmt1-deficient (Nmt1+/-) mice and embryos confirmed widespread expression of Nmt1. Intercrosses of Nmt1+/- mice yielded no viable homozygotes (Nmt1-/-), and heterozygotes were born at a less than predicted frequency. Nmt1-/- embryos died between embryonic days 3.5 and 7.5. Northern blots revealed lower levels of Nmt2 expression in early development than at later time points, a potential explanation for the demise of Nmt1-/- embryos. To explore this concept, we generated Nmt1-/- embryonic stem (ES) cells. The Nmt2 mRNA could be detected in Nmt1-/- ES cells, but the total NMT activity levels were reduced by approximately 95%, suggesting that Nmt2 contributes little to total enzyme activity levels in these early embryo cells. The Nmt1-/- ES cells were functionally abnormal; they yielded small embryoid bodies in in vitro differentiation experiments and did not contribute normally to organogenesis in chimeric mice. We conclude that Nmt1 is not essential for the viability of mammalian cells but is required for development, likely because it is the principal N-myristoyltransferase in early embryogenesis.


Assuntos
Aciltransferases/genética , Aciltransferases/fisiologia , Animais , Northern Blotting , Diferenciação Celular , Genótipo , Heterozigoto , Homozigoto , Hibridização In Situ , Intestinos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Distribuição Tecidual , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA