Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 109: 35-42, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29524915

RESUMO

We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K3[Fe(CN)6]/K4[Fe(CN)6] redox couple in solution. An increase in charge transfer resistance (RCT) was observed upon 4J structure formation, the value of which depends on the analyte length. Cyclic voltammetry (CV) was used to further characterize the sensor and monitor the electrochemical reaction in conjunction with thickness measurements of the mixed DNA monolayer obtained using spectroscopic ellipsometry. In addition, the electron transfer was calculated at the electrode/electrolyte interface using a rotating disk electrode. Limits of detection in the femtomolar range were achieved for nucleic acid targets of different lengths (22 nt, 60 nt, 200 nt). The sensor produced only a background signal in the presence of single base mismatched analytes, even in hundred times excess in concentration. This label-free and highly selective biosensing platform is versatile and can be used for universal detection of nucleic acids of varied lengths which could revolutionize point of care diagnostics for applications such as bacterial or cancer screening.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica/métodos , Ácidos Nucleicos/isolamento & purificação , Polimorfismo de Nucleotídeo Único/genética , Ouro , Humanos , Limite de Detecção , Ácidos Nucleicos/genética , Nucleotídeos/química , Nucleotídeos/genética
2.
Electroanalysis ; 21(17-18): 1939-1943, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20228885

RESUMO

Recent advances in ion-selective electrodes have pushed the detection limits of direct potentiometry to the nanomolar concentration range. Here we present a direct comparison of the sensitivity and selectivity of potentiometric and stripping-voltammetric measurements of cadmium and lead. While both techniques offer a similar sensitivity, the potentiometric method offers higher selectivity in the presence of excess of metal ions (e.g., thallium, tin) that commonly interfere in the stripping-voltammetric operation. Because of the complementary nature of the potentiometric and stripping-voltammetric methods, it is recommended that these techniques will be selected based on the specific analytical problem or used in parallel to provide additional analytical information.

3.
Clin Chim Acta ; 371(1-2): 152-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16650398

RESUMO

BACKGROUND: GSH has a relevant role in human metabolism as an indicator of disease risks. An amperometric sensor for glutathione (GSH) determination is described as an alternative method featuring simple construction procedure and short time analysis. METHOD: The developed sensor was used to determine glutathione at low potential using a TTF-TCNQ complex. RESULTS: The sensor exhibits a linear response range from 5 to 340 micromol/l under applied potential of 200 mV vs. SCE. The sensitivity and detection limit were 90.1 microA l/mmol cm(2) and 0.3 micromol/l, respectively. CONCLUSION: When the sensor was tested in hemolysed erythrocyte samples for GSH determination, a good correlation in results was observed between the sensor and the spectrophotometric method. The sensor showed recovery values between 98% and 102%.


Assuntos
Eritrócitos/química , Glutationa/sangue , Compostos Heterocíclicos , Nitrilas , Técnicas Biossensoriais , Eletroquímica , Hemólise , Humanos , Indicadores e Reagentes , Reprodutibilidade dos Testes , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA