Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1353511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694805

RESUMO

Endophytic actinobacteria are a group of bacteria living inside plant tissue without harmful effects, and benefit the host plant. Many can inhibit plant pathogens and promote plant growth. This study aimed to identify a strain of Streptomyces as a novel species and study its antibiotics production. An endophytic actinobacterium, strain TML10T was isolated from a surface-sterilized leaf of a Thai medicinal plant (Terminalia mucronata Craib and Hutch). As a result of a polyphasic taxonomy study, strain TML10T was identified as a member of the genus Streptomyces. Strain TML10T was an aerobic actinobacterium with well-developed substrate mycelia with loop spore chains and spiny surface. Chemotaxonomic data, including cell wall components, major menaquinones, and major fatty acids, confirmed the affiliation of strain TML10T to the genus Streptomyces. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with a genome comparison study, allowed the genotypic and phenotypic differentiation of strain TML10T and the closest related type strains. The digital DNA-DNA hybridization (dDDH), Average nucleotide identity Blast (ANIb), and ANIMummer (ANIm) values between strain TML10T and the closest type strain, Streptomyces musisoli CH5-8T were 38.8%, 88.5%, and 90.8%, respectively. The name proposed for the new species is Streptomyces naphthomycinicus sp. nov. (TML10T = TBRC 15050T = NRRL B-65638T). Strain TML10T was further studied for liquid and solid-state fermentation of antibiotic production. Solid-state fermentation with cooked rice provided the best conditions for antibiotic production against methicillin-resistant Staphylococcus aureus. The elucidation of the chemical structures from this strain revealed a known antimicrobial agent, naphthomycin A. Mining the genome data of strain TML10T suggested its potential as a producer of antbiotics and other valuable compounds such as ε-Poly-L-lysine (ε-PL) and arginine deiminase. Strain TML10T contains the arcA gene encoding arginine deiminase and could degrade arginine in vitro.

2.
Foods ; 12(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002116

RESUMO

Cyperus rotundus L. exhibits promising potential for the development of functional foods due to its documented pharmacological and biological activities. This study investigated the antioxidant and anti-diabetic properties of C. rotundus kombucha. The results demonstrated potent antioxidant activity with an IC50 value of 76.7 ± 9.6 µL/mL for the DPPH assay and 314.2 ± 16.9 µL/mL for the ABTS assay. Additionally, the kombucha demonstrated alpha-glucosidase inhibitory with an IC50 value of 142.7 ± 5.2 µL/mL. This in vitro antioxidant potential was further validated in vivo using Drosophila. Drosophila fed a high-sugar diet and supplemented with pure kombucha revealed significant increases in DPPH and ABTS free radical scavenging activity. Drosophila on a high-sugar diet supplemented with varying kombucha concentrations manifested enhanced resistance to oxidative stresses induced by H2O2 and paraquat. Concurrently, there was a notable decline in lipid peroxidation levels. Additionally, significant upregulations in CAT, SOD1, and SOD2 activities were observed when the high-sugar diet was supplemented with kombucha. Furthermore, in vivo assessments using Drosophila demonstrated significant reductions in alpha-glucosidase activity when fed with kombucha (reduced by 34.04%, 13.79%, and 11.60% when treated with 100%, 40%, and 10% kombucha, respectively). A comprehensive GC-MS and HPLC analysis of C. rotundus kombucha detected the presence of antioxidative and anti-glucosidase compounds. In conclusion, C. rotundus kombucha exhibits considerable antioxidant and anti-diabetic properties, demonstrating its potential as a beneficial beverage for health promotion.

3.
Foods ; 12(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628053

RESUMO

The stink bug (Tessaratoma papillosa) is a highly popular edible insect in Thai traditional cuisine, but little research has investigated the effects of heat treatment on the quality of stink bugs. Therefore, we aimed to evaluate the effects of roasting and grilling on the chemical changes and volatile compounds of late nymph and adult stink bugs. In general, all treated samples showed increases in phenolic acid, tocopherols, and amino acid contents and a decrease in the content of fiber compared with raw stink bugs (p < 0.05). Cinnamic acid significantly increased by over 200% in late nymph insects and 30% in adult insects after roasting, whereas syringic acid decreased after cooking (p < 0.05). The most predominant volatile compound found in all samples was 5-methyl-octadecane and it decreased after cooking, while volatile alkane compounds increased after cooking. The processed sample extracts showed higher toxicity on oral cancer KB and cervical cancer Hela cells than on Vero cells. We have demonstrated that different cooking methods affected the chemical components which may result in quality attributes if stink bug is to be used as a functional ingredient/food. It may be helpful to improve the nutritional and functional values of stink bugs during deep processing.

4.
Pak J Biol Sci ; 26(3): 119-123, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37480268

RESUMO

<b>Background and Objective:</b> <i> Curcuma longa</i> L. rhizomes are the source of many bioactive compounds such as antitumor, antidepressant, antibacterial, anti-aging and antidiabetic. Due to the growing problem of antibiotic-resistant bacteria, it is necessary to find new sources of antibiotics. This research aimed to investigate the antibacterial activity of ethanolic <i>Curcuma longa</i> L. rhizomes extract against <i>Proteus mirabilis, Acinetobacter baumannii</i> and Multidrug-Resistant <i>Klebsiella pneumoniae</i> (MDR-K). <b>Materials and Methods:</b> Dry <i>Curcuma longa</i> L. rhizomes were extracted with ethanol. The agar diffusion method was used as the primary screening of antibacterial activity determination. The broth dilution method was used to measure the MIC and MIC of the extract. <b>Results:</b> It presented the largest diameter of the inhibition zone at 0.9 mm against <i>Proteus mirabilis</i>, followed by 0.8 mm against MDR-K. The lowest MIC and MBC values were at 0.048 and 0.39 mg mL<sup>1</sup> against <i>Proteus mirabilis</i>, followed by 0.195 and 6.25 mg mL<sup>1</sup> against MDR-K. The ethanolic <i>Curcuma longa</i> L. rhizomes extract did not affect <i>Acinetobacter baumannii</i>. <b>Conclusion:</b> The new finding of this research was that the ethanolic extract from <i>Curcuma longa</i> L. rhizomes can eliminate <i>Proteus mirabilis</i> and MDR-K that can be applied to treating antibiotic-resistant bacterial infectious diseases in the hospital.


Assuntos
Antibacterianos , Curcuma , Antibacterianos/farmacologia , Rizoma , Bactérias , Etanol , Klebsiella pneumoniae , Extratos Vegetais/farmacologia , Proteus mirabilis
5.
Antonie Van Leeuwenhoek ; 115(7): 871-888, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597859

RESUMO

Two endophytic actinobacteria, strains SBTS01T and W18L9T, were isolated from leaf sheath and leaf tissue, respectively, of Jasmine rice (Oryza sativa KDML 105) grown in a rice paddy field in Roi Et Province, Thailand. A polyphasic taxonomic study showed that both strains belong to the genus Streptomyces; they are aerobic, forming well-developed substrate mycelia and aerial mycelia with long chains of spores. Strain SBTS01T shares high 16S rRNA gene sequence similarity with Streptomyces rochei NRRL B-2410 T (99.0%) and Streptomyces naganishii NRRL ISP-5282 T (99.0%). Strain W18L9T shares high 16S rRNA gene sequence similarity with Streptomyces shenzhenensis DSM 42034 T (99.7%). The genotypic and phenotypic properties of strains SBTS01T and W18L9T distinguish these two strains from the closely related species with validly published names. The genome analysis showed the dDDH, ANIb and ANIm values of the draft genome between strain SBTS01T and its close neighbour in the phylogenomic tree, Streptomyces corchorusii DSM 40340T to be 54.1, 92.6, and 94.3%, respectively; similarly for strain W18L9T and the closely related species S. shenzhenensis DSM 42034 T values were 72.5, 95.1 and 97.0%. The name proposed for the new species represented by the type strain SBTS01T is Streptomyces spinosus (= NRRL B-65636 T = TBRC 15052T). The name proposed for the novel subspecies of strain W18L9T is Streptomyces shenzhenensis subsp. oryzicola (= NRRL B-65635 T = TBRC 15051T). Recognition of this subspecies also permits the description of Streptomyces shenzhenensis subsp. shenzhenensis. Strains SBTS01T and W18L9T can produce antibiotic against rice and human pathogens and showed plant growth promoting properties such as production of indole acetic acid, cytokinin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, siderophores and cellulase. Genomic data mining of these two strains confirmed their potential as antibiotic producers and plant growth promoters. Their genomes contain multiple biosynthetic gene clusters including those for terpene, type 1, 2 and 3 polyketide synthase, Non-ribosomal peptide synthetase and lanthipeptides. Genes encoding plant growth promoting traits such; nitrogen fixation, ACC deaminase, siderophore production and stress-related adaption may have ecological significance.


Assuntos
Actinobacteria , Jasminum , Oryza , Streptomyces , Actinobacteria/genética , Antibacterianos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Humanos , Jasminum/genética , Hibridização de Ácido Nucleico , Oryza/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA