Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Nucl Med ; 49(2): 109-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049976

RESUMO

PURPOSE: 11 C-acetate (ACE) PET/CT visualizes reactive astrogliosis in tumor microenvironment. This study compared 11 C-ACE and 11 C-methionine (MET) PET/CT for glioma classification and predicting patient survival. PATIENTS AND METHODS: In this prospective study, a total of 142 patients with cerebral gliomas underwent preoperative MRI, 11 C-MET PET/CT, and 11 C-ACE PET/CT. Tumor-to-contralateral cortex (TNR MET ) and tumor-to-choroid plexus ratios (TNR ACE ) were calculated for 11 C-MET and 11 C-ACE. The Kruskal-Wallis test and Bonferroni post hoc analysis were used to compare the differences in 11 C-TNR MET and 11 C-TNR ACE . The Cox proportional hazards regression analysis and classification and regression tree models were used to assess progression-free survival (PFS) and overall survival (OS). RESULTS: The median 11 C-TNR MET and 11 C-TNR ACE for oligodendrogliomas (ODs), IDH1 -mutant astrocytomas, IDH1 -wildtype astrocytomas, and glioblastomas were 2.75, 1.40, 2.30, and 3.70, respectively, and 1.40, 1.20, 1.77, and 2.87, respectively. The median 11 C-TNR MET was significantly different among the groups, except between ODs and IDH1 -wildtype astrocytomas, whereas the median 11 C-TNR ACE was significantly different among all groups. The classification and regression tree model identified 4 risk groups ( IDH1 -mutant with 11 C-TNR ACE ≤ 1.4, IDH1 -mutant with 11 C-TNR ACE > 1.4, IDH1 -wildtype with 11 C-TNR ACE ≤ 1.8, and IDH1 -wildtype with 11 C-TNR ACE > 1.8), with median PFS of 52.7, 44.5, 25.9, and 8.9 months, respectively. Using a 11 C-TNR ACE cutoff of 1.4 for IDH1 -mutant gliomas and a 11 C-TNR ACE cutoff of 2.0 for IDH1 -wildtype gliomas, all gliomas were divided into 4 groups with median OS of 52.7, 46.8, 27.6, and 12.0 months, respectively. Significant differences in PFS and OS were observed among the 4 groups after correcting for multiple comparisons. CONCLUSIONS: 11 C-ACE PET/CT is better for glioma classification and survival prediction than 11 C-MET PET/CT, highlighting its potential role in cerebral glioma patients.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Metionina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Gliose , Estudos Prospectivos , Glioma/diagnóstico por imagem , Glioma/patologia , Racemetionina , Inflamação , Acetatos , Prognóstico , Mutação , Microambiente Tumoral
2.
Neuro Oncol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085571

RESUMO

BACKGROUND: Reactive astrogliosis is a hallmark of various brain pathologies, including neurodegenerative diseases and glioblastomas. However, the specific intermediate metabolites contributing to reactive astrogliosis remain unknown. This study investigated how glioblastomas induce reactive astrogliosis in the neighboring microenvironment and explores 11C-acetate PET as an imaging technique for detecting reactive astrogliosis. METHODS: Through in vitro, mouse models, and human tissue experiments, we examined the association between elevated 11C-acetate uptake and reactive astrogliosis in gliomas. We explored acetate from glioblastoma cells, which triggers reactive astrogliosis in neighboring astrocytes by upregulating MAO-B and MCT1 expression. We evaluated the presence of cancer stem cells in the reactive astrogliosis region of glioblastomas and assessed the correlation between the volume of 11C-acetate uptake beyond MRI and prognosis. RESULTS: Elevated 11C-acetate uptake is associated with reactive astrogliosis and astrocytic MCT1 in the periphery of glioblastomas in human tissues and mouse models. Glioblastoma cells exhibit increased acetate production as a result of glucose metabolism, with subsequent secretion of acetate. Acetate derived from glioblastoma cells induces reactive astrogliosis in neighboring astrocytes by increasing the expression of MAO-B and MCT1. We found cancer stem cells within the reactive astrogliosis at the tumor periphery. Consequently, a larger volume of 11C-acetate uptake beyond contrast-enhanced MRI was associated with worse prognosis. CONCLUSION: Our results highlight the role of acetate derived from glioblastoma cells in inducing reactive astrogliosis and underscore the potential value of 11C-acetate PET as an imaging technique for detecting reactive astrogliosis, offering important implications for the diagnosis and treatment of glioblastomas.

3.
Brain ; 146(7): 2957-2974, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062541

RESUMO

Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-ß is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Ratos , Animais , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Astrócitos/metabolismo , Radioisótopos de Carbono/metabolismo , Gliose/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Ácido gama-Aminobutírico/metabolismo
4.
Mol Pharm ; 20(2): 1050-1060, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36583623

RESUMO

Several radiolabeled prostate-specific membrane antigen (PSMA)-targeted agents have been developed for detecting prostate cancer, using positron emission tomography imaging and targeted radionuclide therapy. Among them, [18F]PSMA-1007 has several advantages, including a comparatively long half-life, delayed renal excretion, and compatible structure with α-/ß-particle emitter-labeled therapeutics. This study aimed to characterize the preclinical pharmacokinetics and internal radiation dosimetry of [18F]PSMA-1007, as well as its repeatability and specificity for target binding using prostate tumor-bearing mice. In PSMA-positive tumor-bearing mice, the kidney showed the greatest accumulation of [18F]PSMA-1007. The distribution in the tumor attained its peak concentration of 2.8%ID/g at 112 min after intravenous injection. The absorbed doses in the tumor and salivary glands were 0.079 ± 0.010 Gy/MBq and 0.036 ± 0.006 Gy/MBq, respectively. The variance of the net influx (Ki) of [18F]PSMA-1007 to the tumor was minimal between scans performed in the same animals (within-subject coefficient of variation = 7.57%). [18F]PSMA-1007 uptake in the tumor was specifically decreased by 32% in Ki after treatment with a PSMA inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In the present study, we investigated the in vivo preclinical characteristics of [18F]PSMA-1007. Our data from [18F]PSMA-1007 PET/computed tomography (CT) studies in a subcutaneous prostate cancer xenograft mouse model supports clinical therapeutic strategies that use paired therapeutic radiopharmaceuticals (such as [177Lu]Lu-PSMA-617), especially strategies with a quantitative radiation dose estimate for target lesions while minimizing radiation-induced toxicity to off-target tissues.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Masculino , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Xenoenxertos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/tratamento farmacológico , Oligopeptídeos , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral
5.
Clin Nucl Med ; 47(10): 863-868, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868002

RESUMO

PURPOSE: 11 C-acetate ( 11 C-ACE) uptake on PET/CT was recently discovered to represent reactive astrocytes in the tumor microenvironment. This study aimed at evaluating the role of 11 C-ACE PET/CT as an imaging biomarker of reactive astrogliosis in characterizing different types of gliomas. METHODS: In this prospective study, a total of 182 patients underwent 11 C-ACE PET/CT before surgery. The ratio of SUV max of a glioma to the SUV mean of the contralateral choroid plexus ( 11 C-ACE TCR) on PET/CT was calculated. 11 C-ACE TCRs were compared with the World Health Organization grades and isocitrate dehydrogenase 1 ( IDH1 ) mutation status. Grade 2 was considered low-grade tumor, and grades 3 and 4 were considered high-grade tumors. RESULTS: The median 11 C-ACE TCR was significantly higher in IDH1 wild-type (wt) tumors (n = 91) than in IDH1 -mutant (mt) tumors (n = 91) (2.38 vs 1.30, P < 0.001). Of the 91 IDH1 -mt tumors, there were no differences in the median 11 C-ACE TCRs between oligodendrogliomas (ODs) and astrocytic tumors (1.40 vs 1.20, P > 0.05). In grading low- versus high-grade gliomas, the receiver operating characteristic curve analyses showed a higher area under the curve (0.951) in IDH1 -wt tumors than in IDH1 -mt tumors (0.783, P = 0.002). Grade 2 ODs were well differentiated from high-grade gliomas. The 11 C-ACE TCR of grade 3 ODs was significantly lower than that of IDH1 -wt glioblastomas. CONCLUSIONS: High 11 C-ACE uptake is associated with high-grade IDH1 -wt tumors, thus facilitating differentiation from high-grade IDH1-mt and low-grade gliomas. In particular, low 11 C-ACE uptake in ODs is advantageous in overcoming the limitation of radiolabeled amino acid tracers.


Assuntos
Neoplasias Encefálicas , Glioma , Acetatos , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Gliose , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Microambiente Tumoral
6.
Eur J Nucl Med Mol Imaging ; 46(8): 1678-1684, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102001

RESUMO

PURPOSE: We evaluated the usefulness of 11C-methionine (MET) positron emission tomography/computed tomography (PET/CT) for grading cerebral gliomas according to the 2016 WHO classification with special emphasis on the presence of the isocitrate dehydrogenase 1 (IDH1) gene mutation and 1p/19q codeletion. METHODS: In total, 144 patients underwent MET PET/CT before surgery. The ratios of the maximum standardized uptake value (SUV) of the gliomas to the mean SUV of the contralateral cortex on MET PET/CT (MET TNR) were calculated. RESULTS: The median MET TNRs in IDH1-mutant and IDH1-wildtype tumours were 1.95 and 3.35, respectively. From among 74 IDH1-mutant tumours, the oligodendrogliomas showed a higher median MET TNR than the astrocytic tumours (2.90 vs. 1.40, P < 0.001). In grade II, III and IV IDH1-mutant astrocytic tumours, the median MET TNRs were 1.20, 2.05 and 2.20, respectively (grade II vs. grade III, P < 0.0001; grade II vs. grade IV, P = 0.023). In oligodendrogliomas, the MET TNR was lower fin grade II tumours than in grade III tumours (2.30 vs. 3.30 P = 0.008). In differentiating low-grade (grade II) from high-grade (grade III and IV) gliomas, receiver operating characteristic analysis showed a higher area under the curve for wildtype tumours (0.976) than for all tumours (0.852; P < 0.001) and IDH1-mutant tumours (0.817; P = 0.004). CONCLUSION: IDH1-mutant tumours showed lower MET uptake than IDH1-wildtype tumours. Regardless of IDH1 mutation status, oligodendrogliomas with 1p/19q codeletion showed MET uptake as high as that in high-grade IDH1-wildtype tumours. Therefore, MET uptake for glioma grading was more consistent for IDH1-wildtype tumours than for IDH1-mutant tumours.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Metionina/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Compostos Radiofarmacêuticos/farmacocinética , Adulto , Idoso , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Radioisótopos de Carbono , Feminino , Glioma/classificação , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
7.
J Org Chem ; 77(4): 1931-8, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22276914

RESUMO

Ready access to (18)F-labeled aryl synthons is required for preparing novel radiotracers for molecular imaging with positron emission tomography. Diaryliodonium salts react with cyclotron-produced no-carrier-added [(18)F]fluoride ion to produce [(18)F]aryl fluorides. We aimed to prepare functionalized diaryliodonium salts to serve as potential precursors for producing useful (18)F-labeled aryl synthons, such as (18)F-labeled halomethylbenzenes, benzaldehydes, and benzoic acid esters. Such salts were designed to have one functionalized aryl ring, one relatively electron-rich ring, such as 4-methoxyphenyl or 2-thienyl, and a nonfluorine containing weakly nucleophilic anion. Generation of a [hydroxy(tosyloxy)iodo]arene from a functionalized (diacetoxyiodo)arene in situ followed by treatment with an electron-rich arene, such as anisole or thiophene, or with a functionalized arylstannane gave expedient regiospecific access to a wide range of functionally diverse diaryliodonium tosylates in moderate to high yields (44-98%). The described methodology broadens the scope for producing new functionalized diaryliodonium salts for diverse applications.


Assuntos
Iodobenzenos/química , Oniocompostos/síntese química , Compostos de Tosil/síntese química , Benzaldeídos/química , Ácido Benzoico/química , Ésteres/química , Radioisótopos de Flúor , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA