Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Struct Mol Biol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811792

RESUMO

Dysregulation and enhanced expression of MYC transcription factors (TFs) including MYC and MYCN contribute to the majority of human cancers. For example, MYCN is amplified up to several hundredfold in high-risk neuroblastoma. The resulting overexpression of N-myc aberrantly activates genes that are not activated at low N-myc levels and drives cell proliferation. Whether increasing N-myc levels simply mediates binding to lower-affinity binding sites in the genome or fundamentally changes the activation process remains unclear. One such activation mechanism that could become important above threshold levels of N-myc is the formation of aberrant transcriptional condensates through phase separation. Phase separation has recently been linked to transcriptional regulation, but the extent to which it contributes to gene activation remains an open question. Here we characterized the phase behavior of N-myc and showed that it can form dynamic condensates that have transcriptional hallmarks. We tested the role of phase separation in N-myc-regulated transcription by using a chemogenetic tool that allowed us to compare non-phase-separated and phase-separated conditions at equivalent N-myc levels, both of which showed a strong impact on gene expression compared to no N-myc expression. Interestingly, we discovered that only a small percentage (<3%) of N-myc-regulated genes is further modulated by phase separation but that these events include the activation of key oncogenes and the repression of tumor suppressors. Indeed, phase separation increases cell proliferation, corroborating the biological effects of the transcriptional changes. However, our results also show that >97% of N-myc-regulated genes are not affected by N-myc phase separation, demonstrating that soluble complexes of TFs with the transcriptional machinery are sufficient to activate transcription.

2.
Proc Natl Acad Sci U S A ; 121(7): e2310430121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315854

RESUMO

Phase separation (PS) drives the formation of biomolecular condensates that are emerging biological structures involved in diverse cellular processes. Recent studies have unveiled PS-induced formation of several transcriptional factor (TF) condensates that are transcriptionally active, but how strongly PS promotes gene activation remains unclear. Here, we show that the oncogenic TF fusion Yes-associated protein 1-Mastermind like transcriptional coactivator 2 (YAP-MAML2) undergoes PS and forms liquid-like condensates that bear the hallmarks of transcriptional activity. Furthermore, we examined the contribution of PS to YAP-MAML2-mediated gene expression by developing a chemogenetic tool that dissolves TF condensates, allowing us to compare phase-separated and non-phase-separated conditions at identical YAP-MAML2 protein levels. We found that a small fraction of YAP-MAML2-regulated genes is further affected by PS, which include the canonical YAP target genes CTGF and CYR61, and other oncogenes. On the other hand, majority of YAP-MAML2-regulated genes are not affected by PS, highlighting that transcription can be activated effectively by diffuse complexes of TFs with the transcriptional machinery. Our work opens new directions in understanding the role of PS in selective modulation of gene expression, suggesting differential roles of PS in biological processes.


Assuntos
Separação de Fases , Transcriptoma , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Oncogenes
3.
Sci Adv ; 9(9): eade3760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857446

RESUMO

The kinase ataxia telangiectasia mutated (ATM) plays a key role in the DNA damage response (DDR). It is thus essential to visualize spatiotemporal dynamics of ATM activity during DDR. Here, we designed a robust ATM activity reporter based on phosphorylation-inducible green fluorescent protein phase separation, dubbed ATM-SPARK (separation of phases-based activity reporter of kinase). Upon ATM activation, it undergoes phase separation via multivalent interactions, forming intensely bright droplets. The reporter visualizes spatiotemporal dynamics of endogenous ATM activity in living cells, and its signal is proportional to the amount of DNA damage. ATM-SPARK also enables high-throughput screening of biological and small-molecule regulators. We identified the protein phosphatase 4 that blocks ATM activity. We also identified BGT226 as a potent ATM inhibitor with a median inhibitory concentration of ~3.8 nanomolars. Furthermore, BGT226 sensitizes cancer cells to the radiomimetic drug neocarzinostatin, suggesting that BGT226 might be combined with radiotherapeutic treatment. ATM-SPARK achieves large dynamic range, bright fluorescence, and simple signal pattern.


Assuntos
Ataxia Telangiectasia , Humanos , Proteínas de Fluorescência Verde , Dano ao DNA , Ensaios de Triagem em Larga Escala , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia
4.
Anal Chem ; 90(24): 14287-14293, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30431263

RESUMO

Protein-protein interactions (PPIs) mediate signal transduction in cells. Small molecules that regulate PPIs are important tools for biology and biomedicine. Dynamic imaging of small molecule induced PPIs characterizes and verifies these molecules in living cells. It is thus important to develop cellular assays for dynamic visualization of small molecule induced protein-protein association and dissociation in living cells. Here we have applied a fluorophore phase transition based principle and designed a PPI assay named SPPIER (separation of phases-based protein interaction reporter). SPPIER utilizes the green fluorescent protein (GFP) and is thus genetically encoded. Upon small molecule induced PPI, SPPIER rapidly forms highly fluorescent GFP droplets in living cells. SPPIER detects immunomodulatory drug (IMiD) induced PPI between cereblon and the transcription factor Ikaros. It also detects IMiD analogue (e.g., CC-885) induced PPI between cereblon and GSPT1. Furthermore, SPPIER can visualize bifunctional molecules (e.g. PROTAC)-induced PPI between an E3 ubiquitin ligase and a target protein. Lastly, SPPIER can be modified to image small molecule induced protein-protein dissociation, such as nutlin-induced dissociation between HDM2 and p53. The intense brightness and rapid kinetics of SPPIER enable robust and dynamic visualization of PPIs in living cells.


Assuntos
Fator de Transcrição Ikaros/metabolismo , Peptídeo Hidrolases/metabolismo , Mapas de Interação de Proteínas , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Fator de Transcrição Ikaros/química , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Microscopia Confocal , Proteínas Nucleares/genética , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Talidomida/análogos & derivados , Talidomida/química , Talidomida/metabolismo , Imagem com Lapso de Tempo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Proteína Supressora de Tumor Von Hippel-Lindau/genética
5.
Mol Cell ; 69(2): 334-346.e4, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29307513

RESUMO

Visualizing dynamics of kinase activity in living animals is essential for mechanistic understanding of cell and developmental biology. We describe GFP-based kinase reporters that phase-separate upon kinase activation via multivalent protein-protein interactions, forming intensively fluorescent droplets. Called SPARK (separation of phases-based activity reporter of kinase), these reporters have large dynamic range (fluorescence change), high brightness, fast kinetics, and are reversible. The SPARK-based protein kinase A (PKA) reporter reveals oscillatory dynamics of PKA activities upon G protein-coupled receptor activation. The SPARK-based extracellular signal-regulated kinase (ERK) reporter unveils transient dynamics of ERK activity during tracheal metamorphosis in live Drosophila. Because of intensive brightness and simple signal pattern, SPARKs allow easy examination of kinase signaling in living animals in a qualitative way. The modular design of SPARK will facilitate development of reporters of other kinases.


Assuntos
Imagem Óptica/métodos , Fosfotransferases/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Drosophila , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Fosfotransferases/metabolismo
6.
Anal Chem ; 89(20): 10783-10789, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972746

RESUMO

Claudins (CLs) are membrane proteins found in tight junctions and play a major role in establishing the intercellular barrier. However, some CLs are abnormally overexpressed on tumor cells and are valid clinical biomarkers for cancer diagnosis. Here, we constructed antibody Fab fragment-based Quenchbodies (Q-bodies) as effective and reliable fluorescent sensors for detecting and visualizing CLs on live tumor cells. The variable region genes for anti-CL1 and anti-CL4 antibodies were used to express recombinant Fab fragments, and clones recognizing CL4 with high affinity were selected for making Q-bodies. When two fluorescent dyes were conjugated to the N-terminal tags attached to the Fab, the fluorescent signal was significantly increased after adding nanomolar-levels of purified CL4. Moreover, addition of the Q-body to CL4-expressing cells including CL4-positive cancer cells led to a clear fluorescence signal with low background, even without washing steps. Our findings suggested that such Q-bodies would serve as a potent tool for specifically illuminating membrane targets expressed on cancer cells, both in vitro and in vivo.


Assuntos
Claudinas/análise , Fragmentos Fab das Imunoglobulinas/imunologia , Microscopia Confocal , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Claudinas/imunologia , Corantes Fluorescentes/química , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Junções Íntimas/metabolismo
7.
Analyst ; 142(5): 787-793, 2017 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28144646

RESUMO

Lipid peroxidation is involved in many disorders and diseases such as cardiovascular disease, cancers, neurodegenerative diseases, and even aging. Lipid peroxidation products existing in blood or bodily fluids are very important biomarkers for the diagnosis of such diseases. In particular, 13(R,S)-hydroxy-9(E),11(E)-octadecadienoic acid (13-(E,E)-HODE) is an oxidiation product of linoleic acid, which is an important biomarker for many diseases such as diabetes and Alzheimer's disease. In this study, we successfully displayed the antigen-binding fragment of an antibody produced by hybridoma 1213-1 on the M13 phage and performed analysis of the antibody variable region genes. The blast results suggested that it is a novel antibody. We also developed a phage-antibody-based competitive ELISA and a novel Open Sandwich ELISA (OS ELISA) for the detection of 13-(E,E)-HODE. The OS ELISA showed a limit of detection (LOD) of 15.6 nM of 13-(E,E)-HODE and low cross-reactivity with other HODE such as 9-(E,E)-HODE. Another format of the open sandwich ELISA with purified maltose binding protein-fused VL and VH-phage showed a lower LOD of 2.2 nM of 13-(E,E)-HODE, which may be sensitive enough to detect the concentration of 13-(E,E)-HODE in patients' blood samples. This is the first OS ELISA for the detection of lipids, and we believe it also represents the first molecular cloning of anti-HODE antibody genes.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ácidos Linoleicos/análise , Ácidos Graxos Insaturados , Humanos , Ácido Linoleico , Peroxidação de Lipídeos
8.
Nucleic Acids Res ; 44(13): 6242-51, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27131790

RESUMO

During DNA double-strand break and replication fork repair by homologous recombination, the RAD51 recombinase catalyzes the DNA strand exchange reaction via a helical polymer assembled on single-stranded DNA, termed the presynaptic filament. Our published work has demonstrated a dual function of the SWI5-SFR1 complex in RAD51-mediated DNA strand exchange, namely, by stabilizing the presynaptic filament and maintaining the catalytically active ATP-bound state of the filament via enhancement of ADP release. In this study, we have strived to determine the basis for physical and functional interactions between Mus musculus SWI5-SFR1 and RAD51. We found that SWI5-SFR1 preferentially associates with the oligomeric form of RAD51. Specifically, a C-terminal domain within SWI5 contributes to RAD51 interaction. With specific RAD51 interaction defective mutants of SWI5-SFR1 that we have isolated, we show that the physical interaction is indispensable for the stimulation of the recombinase activity of RAD51. Our results thus help establish the functional relevance of the trimeric RAD51-SWI5-SFR1 complex and provide insights into the mechanistic underpinnings of homology-directed DNA repair in mammalian cells.


Assuntos
Recombinação Homóloga/genética , Proteínas Nucleares/química , Rad51 Recombinase/química , Trifosfato de Adenosina/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo
9.
Nucleic Acids Res ; 42(1): 349-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078249

RESUMO

Homologous recombination catalyzed by the RAD51 recombinase eliminates deleterious DNA lesions from the genome. In the presence of ATP, RAD51 forms a nucleoprotein filament on single-stranded DNA, termed the presynaptic filament, to initiate homologous recombination-mediated DNA double-strand break repair. The SWI5-SFR1 complex stabilizes the presynaptic filament and enhances its ability to mediate the homologous DNA pairing reaction. Here we characterize the RAD51 presynaptic filament stabilization function of the SWI5-SFR1 complex using optical tweezers. Biochemical experiments reveal that SWI5-SFR1 enhances ATP hydrolysis by single-stranded DNA-bound RAD51. Importantly, we show that SWI5-SFR1 acts by facilitating the release of ADP from the presynaptic filament. Our results thus provide mechanistic understanding of the function of SWI5-SFR1 in RAD51-mediated DNA recombination.


Assuntos
Difosfato de Adenosina/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Trifosfato de Adenosina/metabolismo , Meiose/genética , Pinças Ópticas , Recombinação Genética
10.
BMC Biotechnol ; 13: 31, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23536995

RESUMO

BACKGROUND: Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. RESULTS: Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner's size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degree C up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. CONCLUSION: Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu.


Assuntos
Vaga-Lumes/enzimologia , Luciferases de Vaga-Lume/metabolismo , Mapeamento de Interação de Proteínas , Animais , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Luciferases de Vaga-Lume/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Razão Sinal-Ruído , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Nucleic Acids Res ; 40(14): 6558-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22492707

RESUMO

Homologous recombination (HR) represents a major error-free pathway to eliminate pre-carcinogenic chromosomal lesions. The DNA strand invasion reaction in HR is mediated by a helical filament of the Rad51 recombinase assembled on single-stranded DNA that is derived from the nucleolytic processing of the primary lesion. Recent studies have found that the human and mouse Swi5 and Sfr1 proteins form a complex that influences Rad51-mediated HR in cells. Here, we provide biophysical evidence that the mouse Swi5-Sfr1 complex has a 1:1 stoichiometry. Importantly, the Swi5-Sfr1 complex, but neither Swi5 nor Sfr1 alone, physically interacts with Rad51 and stimulates Rad51-mediated homologous DNA pairing. This stimulatory effect stems from the stabilization of the Rad51-ssDNA presynaptic filament. Moreover, we provide evidence that the RSfp (rodent Sfr1 proline rich) motif in Sfr1 serves as a negative regulatory element. These results thus reveal an evolutionarily conserved function in the Swi5-Sfr1 complex and furnish valuable information as to the regulatory role of the RSfp motif that is specific to the mammalian Sfr1 orthologs.


Assuntos
Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Motivos de Aminoácidos , Animais , Dimerização , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA