Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 141(3): 651-661, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390050

RESUMO

Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1-/- neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Encefalopatias/genética , Regulação da Expressão Gênica/genética , Mutação/genética , Neurônios/patologia , Receptores de AMPA/metabolismo , Adenosina Trifosfatases/metabolismo , Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Proteínas de Transporte/metabolismo , Análise Mutacional de DNA , Saúde da Família , Feminino , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Consumo de Oxigênio/genética , Transporte Proteico/genética , RNA Mensageiro/metabolismo
2.
Hum Mol Genet ; 24(18): 5313-25, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26130693

RESUMO

Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues.


Assuntos
Cerebelo/patologia , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Tubulina (Proteína)/genética , Alelos , Encéfalo/patologia , Linhagem Celular , Vermis Cerebelar/patologia , Estudos de Coortes , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Malformações do Sistema Nervoso/diagnóstico , Fenótipo , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Tubulina (Proteína)/química
3.
Neurobiol Dis ; 64: 131-141, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24407264

RESUMO

Genetic mutations in voltage-gated and ligand-gated ion channel genes have been identified in a small number of Mendelian families with genetic generalised epilepsies (GGEs). They are commonly associated with febrile seizures (FS), childhood absence epilepsy (CAE) and particularly with generalised or genetic epilepsy with febrile seizures plus (GEFS+). In clinical practice, despite efforts to categorise epilepsy and epilepsy families into syndromic diagnoses, many generalised epilepsies remain unclassified with a presumed genetic basis. During the systematic collection of epilepsy families, we assembled a cohort of families with evidence of GEFS+ and screened for variations in the γ2 subunit of the γ-aminobutyric acid (GABA) type A receptor gene (GABRG2). We detected a novel GABRG2(p.R136*) premature translation termination codon in one index-case from a two-generation nuclear family, presenting with an unclassified GGE, a borderline GEFS+ phenotype with learning difficulties and extended behavioural presentation. The GABRG2(p.R136*) mutation segregates with the febrile seizure component of this family's GGE and is absent in 190 healthy control samples. In vitro expression assays demonstrated that γ2(p.R136*) subunits were produced, but had reduced cell-surface and total expression. When γ2(p.R136*) subunits were co-expressed with α1 and ß2 subunits in HEK 293T cells, GABA-evoked currents were reduced. Furthermore, γ2(p.R136*) subunits were highly-expressed in intracellular aggregations surrounding the nucleus and endoplasmic reticulum (ER), suggesting compromised receptor trafficking. A novel GABRG2(p.R136*) mutation extends the spectrum of GABRG2 mutations identified in GEFS+ and GGE phenotypes, causes GABAA receptor dysfunction, and represents a putative epilepsy mechanism.


Assuntos
Epilepsia Generalizada/genética , Fenótipo , Mutação Puntual , Receptores de GABA-A/genética , Convulsões Febris/genética , Adulto , Animais , Células COS , Células Cultivadas , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Chlorocebus aethiops , Estudos de Coortes , Família , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Neurônios/fisiologia , Células PC12 , Ratos , Receptores de GABA-A/metabolismo
4.
Brain ; 136(Pt 2): 536-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23361065

RESUMO

Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually single-gene disorders affecting neuronal migration during cerebral cortical development. Polymicrogyria has been associated with genetic and environmental causes and is considered a malformation secondary to abnormal post-migrational development. However, the aetiology in many individuals with these cortical malformations is still unknown. During the past few years, mutations in a number of neuron-specific α- and ß-tubulin genes have been identified in both lissencephaly and polymicrogyria, usually associated with additional cerebral anomalies including callosal hypoplasia or agenesis, abnormal basal ganglia and cerebellar hypoplasia. The tubulin proteins form heterodimers that incorporate into microtubules, cytoskeletal structures essential for cell motility and function. In this study, we sequenced the TUBB2B and TUBA1A coding regions in 47 patients with a diagnosis of polymicrogyria and five with an atypical lissencephaly on neuroimaging. We identified four ß-tubulin and two α-tubulin mutations in patients with a spectrum of cortical and extra-cortical anomalies. Dysmorphic basal ganglia with an abnormal internal capsule were the most consistent feature. One of the patients with a TUBB2B mutation had a lissencephalic phenotype, similar to that previously associated with a TUBA1A mutation. The remainder had a polymicrogyria-like cortical dysplasia, but the grey matter malformation was not typical of that seen in 'classical' polymicrogyria. We propose that the cortical malformations associated with these genes represent a recognizable tubulinopathy-associated spectrum that ranges from lissencephalic to polymicrogyric cortical dysplasias, suggesting shared pathogenic mechanisms in terms of microtubular function and interaction with microtubule-associated proteins.


Assuntos
Homologia de Genes/genética , Lisencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Sequência de Aminoácidos , Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Lisencefalia/diagnóstico , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Dados de Sequência Molecular , Tubulina (Proteína)/química
5.
Epilepsy Behav ; 26(3): 241-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23084878

RESUMO

It has been estimated that JME (juvenile myoclonic epilepsy), when compared to other adult epilepsy syndromes, is most likely to have a genetic cause. However, decades of research have not brought us closer to finding a single 'JME gene' that is important on a population basis. Is this due in part to the genetic complexity of the syndrome, the cryptic nature of the genes of effect, or perhaps because JME is not one condition at all but many? Before we can begin to harness the power of next-generation sequencing techniques, we must first reduce JME down to lacunae of homogeneity--using increasingly more sophisticated phenotyping tools. The current technological advances in gene sequencing have been used to dramatic effect to identify single gene causes in rare syndromes and identify risk variants in malignancies. Filtering the variety of the human exome or genome down into a handful of biologically plausible candidates now relies on a pipeline of biostatistics, software, and functional analyses. It is simply unacceptable to return uncertain findings to the clinical domain and, therefore, it is crucial that pathogenicity is fully determined before families receive genetic counseling and test results.


Assuntos
Biologia Computacional , Testes Genéticos , Epilepsia Mioclônica Juvenil/genética , Pesquisa Translacional Biomédica , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Humanos , Epilepsia Mioclônica Juvenil/complicações
6.
J Biol Chem ; 287(34): 28986-9002, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753417

RESUMO

Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [(3)H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311-Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H(+) and Zn(2+) dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo.


Assuntos
Genes Dominantes , Doenças Genéticas Inatas , Proteínas da Membrana Plasmática de Transporte de Glicina , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Doenças do Sistema Nervoso , Substituição de Aminoácidos , Animais , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Transporte de Íons/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Terminações Pré-Sinápticas , Transporte Proteico/genética , Espanha , Reino Unido
7.
Heart Rhythm ; 8(4): 551-4, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21118729

RESUMO

BACKGROUND: The potassium channel I(Ks), which is encoded by the KCNQ1 gene, is expressed in organ systems including the inner ear, kidneys, lungs, intestine, and stomach in addition to the heart. Increasing evidence indicates that I(Ks) in the stomach plays an essential role in enabling gastric acid production. It is not known whether gastric acid production is disordered in patients with long QT type 1. Serum gastrin levels become elevated in subjects with disordered gastric acid production. OBJECTIVE: The purpose of this study was to evaluate serum gastrin levels, as a surrogate for impaired gastric acid secretion, in patients with KCNQ1 mutations, and to see if gastrin levels correlate with severity of cardiac disease. METHODS: Fasting serum gastrin levels were measured using a standardized immunometric technique in an index case and 12 subjects with known KCNQ1 mutations. RESULTS: An adult female with Jervell and Lange-Nielsen syndrome (JLNS; with KCNQ1 nonsense mutations p.Arg518X and p.Arg190AlafsX95 ) presented with multiple gastric carcinoid tumors and grossly elevated serum gastrin levels (943-1,570 pmol/L; normal 6-55 pmol/L) and absent acid secretion. Gastrin levels in two girls with JLNS, unrelated to the index case (missense mutations p.Leu266Pro and Gly269Ser), also were high (305 and 229 pmol/L). Gastrin levels were normal in 10 KCNQ1 heterozygous single mutation carriers, even in those with severe long QT syndrome, including three heterozygous family members of the JLNS subjects. CONCLUSION: JLNS may be associated with elevated gastrin levels, impaired acid secretion, and risk of gastric carcinoid tumors. Among KCNQ1 single mutation carriers, gastrin levels were normal and did not appear to be linked to the severity of clinical expression of long QT syndrome.


Assuntos
DNA/genética , Gastrinas/sangue , Síndrome de Jervell-Lange Nielsen/sangue , Canal de Potássio KCNQ1/genética , Mutação , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Seguimentos , Heterozigoto , Humanos , Síndrome de Jervell-Lange Nielsen/genética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
8.
Heart Rhythm ; 5(9): 1275-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18774102

RESUMO

BACKGROUND: Sequencing or denaturing high-performance liquid chromatography (dHPLC) analysis of the known genes associated with the long QT syndrome (LQTS) fails to identify mutations in approximately 25% of subjects with inherited LQTS. Large gene deletions and duplications can be missed with these methodologies. OBJECTIVE: The purpose of this study was to determine whether deletions and/or duplications of one or more exons of the main LQTS genes were present in an LQTS mutation-negative cohort. METHODS: Multiplex ligation-dependent probe amplification (MLPA), a quantitative fluorescent approach, was used to screen 26 mutation-negative probands with an unequivocal LQTS phenotype (Schwartz score >4). The appropriate MLPA kit contained probes for selected exons in LQTS genes KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2. Real-time polymerase chain reaction was used to validate the MLPA findings. RESULTS: Altered exon copy number was detected in 3 (11.5%) patients: (1) an ex13-14del of the KCNQ1 gene in an 11-year-old boy with exercise-induced collapse (QTc 580 ms); (2) an ex6-14del of the KCNH2 gene in a 22-year-old woman misdiagnosed with epilepsy since age 9 years (QTc 560 ms) and a sibling with sudden death at age 13 years; and (3) an ex9-14dup of the KCNH2 gene in a 12 year-old boy (QTc 550 ms) following sudden nocturnal death of his 32-year-old mother. CONCLUSION: If replicated, this study demonstrates that more than 10% of patients with LQTS and a negative current generation genetic test have large gene deletions or duplications among the major known LQTS susceptibility genes. As such, these findings suggest that sequencing-based mutation detection strategies should be followed by deletion/duplication screening in all LQTS mutation-negative patients.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Deleção de Genes , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Adolescente , Adulto , Criança , Canal de Potássio ERG1 , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Técnicas de Amplificação de Ácido Nucleico , Linhagem , Projetos Piloto , Fatores de Risco , Adulto Jovem
9.
Heart Rhythm ; 4(10): 1306-14, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17905336

RESUMO

BACKGROUND: Genetic testing in long QT syndrome (LQTS) is moving from research into clinical practice. We have recently piloted a molecular genetics program in a New Zealand research laboratory with a view to establishing a clinical diagnostic service. OBJECTIVE: This study sought to report the spectrum of LQTS and Brugada mutations identified by a pilot LQTS gene testing program in New Zealand. METHODS: Eighty-four consecutive index cases referred for LQT gene testing, from New Zealand and Australia, were evaluated. The coding sequence and splice sites of 5 LQTS genes (KCNQ1, HERG, SCN5A, KCNE1, and KCNE2) were screened for genomic variants by transgenomics denaturing high-performance liquid chromatography (dHPLC) system and automated DNA sequencing. RESULTS: Forty-five LQTS mutations were identified in 43 patients (52% of the cohort): 25 KCNQ1 mutations (9 novel), 13 HERG mutations (7 novel), and 7 SCN5A mutations (2 novel). Forty patients had LQTS, and 3 had Brugada syndrome. Mutations were identified in 14 patients with resuscitated sudden cardiac death: 4 KCNQ1, 5 HERG, 5 SCN5A. In 17 cases there was a family history of sudden cardiac death in a first-degree relative: 8 KCNQ1, 6 HERG, 2 SCN5A, and 1 case with mutations in both KCNQ1 and HERG. CONCLUSION: The spectrum of New Zealand LQTS and Brugada mutations is similar to previous studies. The high proportion of novel mutations (40%) dictates a need to confirm pathogenicity for locally prevalent mutations. Careful screening selection criteria, cellular functional analysis of novel mutations, and development of locally relevant control sample cohorts will all be essential to establishing regional diagnostic services.


Assuntos
Síndrome de Brugada/genética , Análise Mutacional de DNA , Síndrome do QT Longo/genética , Adolescente , Adulto , Síndrome de Brugada/diagnóstico , Reanimação Cardiopulmonar , Criança , Pré-Escolar , Deleção Cromossômica , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Mutação INDEL/genética , Lactente , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.5 , Nova Zelândia , Fases de Leitura Aberta/genética , Projetos Piloto , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Sítios de Splice de RNA/genética , Fatores de Risco , Análise de Sequência de DNA , Análise de Sequência de Proteína , Canais de Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA