Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 8(3): 629-637, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27958708

RESUMO

The metal ions of iron, copper, and zinc have long been associated with the aggregation of ß-amyloid (Aß) plaques in Alzheimer's disease; an interaction that has been suggested to promote increased oxidative stress and neuronal dysfunction. We examined plaque metal load in the hippocampus of APP/PS1 mice using X-ray fluorescence microscopy to assess how the anatomical location of Aß plaques was influenced by the metal content of surrounding tissue. Immunohistochemical staining of Aß plaques colocalized with areas of increased X-ray scattering power in unstained tissue sections, allowing direct X-ray based-assessment of plaque metal levels in sections subjected to minimal chemical fixation. We identified and mapped 48 individual plaques in four subregions of the hippocampus from four biological replicates. Iron, Cu, and Zn areal concentrations (ng cm-2) were increased in plaques compared to the surrounding neuropil. However, this elevation in metal load reflected the local metal makeup of the surrounding neuropil, where different brain regions are enriched for different metal ions. After correcting for tissue density, only Zn levels remained elevated in plaques. This study suggests that the in vivo binding of Zn to plaques is not simply due to increased protein deposition.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Cobre/química , Ferro/química , Neurópilo/química , Zinco/química , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Metais/química , Camundongos , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Raios X
2.
Nat Commun ; 7: 11007, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975966

RESUMO

The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9ß1/α4ß1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ(-/-) model, demonstrated by a significant increase in PB CD34(+) cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9ß1/α4ß1 within the endosteal niche. These results support using dual α9ß1/α4ß1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications.


Assuntos
Dipeptídeos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Integrina alfa4beta1/antagonistas & inibidores , Integrinas/antagonistas & inibidores , Rodaminas/farmacologia , Sulfonas/farmacologia , Animais , Benzilaminas , Ciclamos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores CXCR4/antagonistas & inibidores
3.
Bioorg Med Chem Lett ; 24(14): 3108-12, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24878198

RESUMO

Alzheimer's disease is the most common neurodegenerative disease and is one of the main causes of death in developed countries. Consumption of foods rich in polyphenolics is strongly correlated with reduced incidence of Alzheimer's disease. Our study has investigated the biological activity of previously untested polyphenolic compounds in preventing amyloid ß aggregation. The anti-aggregatory potential of these compounds was assessed using the Thioflavin-T assay, transmission electron microscopy, dynamic light scattering and size exclusion chromatography. Two structurally related compounds, luteolin and transilitin were identified as potent inhibitors of Aß fibril formation. Computational docking studies with an X-ray derived oligomeric structure offer a rationale for the inhibitory activity observed and may facilitate development of improved inhibitors of Aß aggregation and toxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Polifenóis/química , Polifenóis/isolamento & purificação , Agregação Patológica de Proteínas/prevenção & controle , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA